Synlett
DOI: 10.1055/a-2774-2259
Account
Published as part of the Special Issue dedicated to Prof. S. Chandrasekaran on his 80th birthday

Benzylic C(sp3)–H Functionalization by Photo Redox Catalysis

Authors

  • Kumari Swati Sharma

    1   Department of Chemistry, Banaras Hindu University, Varanasi, India (Ringgold ID: RIN30114)
  • Sushil Kumar Ranjan

    1   Department of Chemistry, Banaras Hindu University, Varanasi, India (Ringgold ID: RIN30114)
  • Ganesh Pandey

    1   Department of Chemistry, Banaras Hindu University, Varanasi, India (Ringgold ID: RIN30114)

G. P. thanks SERB, New Delhi, for the award of the National Science Chair (NSC/2021/000024). K. S. S. thanks the University Grants Commission (UGC-JRF), New Delhi, for the research fellowship. S.K.R, thanks for (UGC-NFSC), the authors are also grateful to the BHU and SATHI-BHU for their analytical support.


Graphical Abstract

Abstract

Benzylic C–H bonds, due to their enhanced reactivity, offer a valuable platform for the selective functionalization in organic synthesis. Recent advancements in catalytic methods have enabled direct transformation of these sp3-hybridized sites under mild conditions. Transition-metal catalysis, photo redox strategies, and radical pathways have shown particular promise. These approaches allow for the construction of diverse C–C and C–X (X = N, O, Br, S) bonds. The presence of electron-withdrawing groups on the substrates significantly reduces the reaction efficiency, representing a limitation of these methodologies. The ability to functionalize benzylic positions through intermolecular and intramolecular methods expand the toolbox for late-stage modification of complex molecules. Such transformations are increasingly important in pharmaceutical and materials chemistry.



Publication History

Received: 24 September 2025

Accepted after revision: 10 December 2025

Article published online:
15 January 2026

© 2026. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

    • 1a Blakemore DC, Castro L, Churcher I. et al. Nat Chem 2018; 10: 383-394
    • 1b Govaerts S, Nyuchev A, Noël T. J Flow Chem 2020; 10: 13-71
    • 1c Xue X, Ji P, Zhou B, Cheng J. Chem Rev 2017; 117: 8622-8648
    • 1d Oliva M, Coppola GA, Van der Eycken EV, Sharma UK. Adv Synth Catal 2021; 363: 1810-1834
    • 3a Yan M, Kawamata Y, Baran PS. Chem Rev 2017; 117: 13230-13319
    • 3b Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem 2010; 12: 2099-2119
    • 4a Pandey G, Koley S, Talukdar R, Sahani PK. Org Lett 2018; 20 (18) 5861-5865
    • 4b Pandey G, Tiwari SK, Singh B, Vanka K, Jain S. Chem Commun 2017; 53: 12337-12340
    • 4c Pandey G, Jadhav D, Tiwari SK, Singh B. Adv Synth Catal 2014; 356: 2813-2818
    • 4d Pandey G, Tiwari SK, Singh B. Tetrahedron Lett 2016; 57: 4480-4483
    • 4e Pandey G, Singh D, Laha R. Asian J Org Chem 2017; 6: 469-474
    • 4f Pandey G, Tiwari SK, Singh P, Mondal PK. Org Lett 2021; 23 (20) 7730-7734
    • 4g Mondal PK, Tiwari SK, Singh P, Pandey GJ. Org Chem 2021; 86 (23) 17184-17196
    • 4h Ghosh MK, Sharma KS, Pandey G. Org Biomol Chem 2023; 21: 538-550
    • 5a Pandey G. Synlett 1992; 546-552 (Account article)
    • 5b Pandey G. Top Curr Chem 1993; 168: 175
    • 6a Anderson CP, Salmon DJ, Meyer TJ, Young RC. J Am Chem Soc 1977; 99: 1980
    • 6b Kohls P, Jadhav D, Pandey G, Reiser O. Org Lett 2012; 14 (22) 672-675
    • 7a Condie AG, Gonzalez-Gomez JC, Stephenson CRJ. J Am Chem Soc 2010; 132: 1464
    • 7b Hari DP, König B. Org Lett 2011; 13: 3852
    • 7c Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Chem Commun 2011; 47: 2360
    • 7d Rueping M, Zhu S, Koenigs RM. Chem Commun 2011; 47: 8679-8681
  • 8 Liu Q, Li Y-N, Zhang H-H, Chen B, Tung C-H, Wu L-Z. Chem Eur J 2012; 18: 620-627
  • 9 McNally A, Prier CK, MacMillan DWC. Science 2011; 334 (6059) 1114-1117
  • 10 Freeman DB, Furst L, Condie AG, Stephenson CRJ. Org Lett 2012; 14 (01) 94-97
    • 11a Pandey G, Pal S, Laha R. Angew Chem Int Ed 2013; 52: 5146-5149
    • 11b Xuan J, Cheng Y, An J, Lu L-Q, Zhang X-X, Xiao W-J. Angew Chem 2013; 125: 5250-5253
    • 12a Photoinduced SET initiated reactions: Generation and synthetic application of arene radical cations”: A. Krishna, Ph.D. Thesis entitled, submitted to Osmania University, Hyderabad, India, 1989
    • 12b Pac C, Nakasone A, Sakurai H. J Am Chem Soc 1977; 99: 5806-5808
    • 13a Sheldon RA, Kochi JK. Metal Catalyzed Oxidations of Organic Compounds. New York: Academic Press; 1981
    • 13b Cainelli G, Cardillo G. Chromium Oxidations in Organic Chemistry. Berlin: Springer; 1984
    • 13c Hudlicky M. Oxidion in Organic Chemistry. Washington, DC: American Chemical Society; 1990
    • 13d Recupero M, Punta C. Chem Rev 2007; 107: 3800-3842
  • 14 Pandey G, Laha R. Angew Chem Int Ed 2015; 54: 14875-14879
  • 15 Pandey G, Laha R, Singh D. J Org Chem 2016; 81 (16) 7161-7171
    • 16a Lowry MS, Goldsmith JI, Slinker JD. et al. Chem Mater 2005; 17: 5712
    • 16b Tucker JW, Narayanam JMR, Shah PS, Stephenson CRJ. Chem Commun 2011; 47: 5040
  • 17 Pandey G, Laha R, Mondal PK. Chem Commun 2019; 55: 9689-9692
    • 18a Lingamurthy M, Jagadeesh Y, Ramakrishna K, Rao BV. J Org Chem 2016; 81: 1367
    • 18b Yamaguchi M, Itagaki D, Ueda H, Tokuyama H. J Antibiot (Tokyo) 2016; 69: 253
  • 20 Swati Sharma K, Kumar Tiwari S, Pandey G. Asian J Org Chem 2024; 13 (08) No. e202400114
    • 22a Collins IJ. J Chem Soc Perkin Trans 1998; 1: 1869-1888
    • 22b Hirata A, Kim SY, Kobayakawa N, Tanaka N, Kashiwada Y. Fitoterapia 2015; 102: 49-55
    • 22c Devon TK, Scott AI. Handbook of Naturally Occurring Compounds. Vol. 1. New York: Academic Press; 1975: 249
    • 23a Maso MJD, Nepomuceno GM, St Peter MA, Gitre HH, Martin KS, Shaw JT. Org Lett 2016; 18: 1740-1743
    • 23b Fu TH, McElroy WT, Shamszad M, Martin SF. Org Lett 2012; 14: 3834-3837
    • 23c Shenvi RA, Corey EJ. J Am Chem Soc 2009; 131: 5746-5747
    • 23d Masse CE, Morgan AJ, Adams J, Panek JS. Eur J Org Chem 2000; 2513-2528
    • 24a Shen DY, Nguyen TN, Wu SJ. et al. J Nat Prod 2015; 78: 2521-2530
    • 24b Okazaki Y, Ishizuka A, Ishihara A, Nishioka T, Iwamura HJ. Org Chem 2007; 72: 3830-3839
    • 24c Caruano J, Muccioli GG, Robiette R. Org Biomol Chem 2016; 14: 10134-10156
  • 25 Sharma KS, Thadem N, Pandey G. J Org Chem 2025; 90: 3384-3390
  • 26 Zhang Z, Butt NA, Zhang W. Chem Rev 2016; 116 (22) 14769-14827
  • 27 Jiang W, Li N, Zhou L, Zeng Q. ACS Catal 2018; 8 (11) 9899-9906
  • 28 Xiong B, Xu S, Liu Y, Tang K-W, Wong W-Y. J Org Chem 2021; 86 (03) 1516-1527