Subscribe to RSS
DOI: 10.1055/a-2772-4544
Synthesis of Sterically Hindered Allylboranes via Ru-Catalyzed Reductive Boration of Propargylic Acetates
Authors
Financial support was provided by National Natural Science Foundation of China (22271242, 22471232), Research Grants Council of Hong Kong (16309722, 16304322, 16309023, 16310924), and Innovation and Technology Commission (ITC-CNERC14SC01).
Supported by: Research Grants Council of Hong Kong 16304322,16309023,16309722,16310924 Supported by: National Natural Science Foundation of China 22271242,22471232

Abstract
A ruthenium-catalyzed selective synthesis of sterically hindered allylboranes is disclosed. Starting from readily available propargylic acetates, this process proceeded via initial reduction to the corresponding allenes followed by α-selective hydroboration. The choice of a suitable catalyst that can catalyze both steps is crucial to success. This process enjoys easy substrate preparation. It serves as a promising starting point for the further development into more practical synthesis of valuable hindered allylboranes.
Publication History
Received: 03 November 2025
Accepted after revision: 12 December 2025
Accepted Manuscript online:
12 December 2025
Article published online:
31 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Suzuki A. Angew Chem Int Ed 2011; 50: 6722-6737
- 1b Hall DG, Lee JCH, Ding J. Pure Appl Chem 2012; 84: 2263-2277
- 1c Li D, Zhang H, Wang Y. Chem Soc Rev 2013; 42: 8416-8433
- 1d Lennox AJJ, Lloyd-Jones GC. Chem Soc Rev 2014; 43: 412-443
- 1e Xu L, Zhang S, Li P. Chem Soc Rev 2015; 44: 8848-8858
- 1f Sandford C, Aggarwal VK. Chem Commun 2017; 53: 5481-5494
- 2 Diner C, Szabo KJ. J Am Chem Soc 2017; 139: 2-14
- 3 Hall DG, Lachance H. Allylboration of Carbonyl Compounds. Hoboken, NJ: Wiley; 2012
- 4 Tan Y-X, Li S, Chen L. et al. Angew Chem Int Ed 2025; 64: e202420370
- 5a Trost BM, Ball ZT. Synthesis 2005; 2005: 853-887
- 5b Sundararaju B, Fürstner A. Angew Chem Int Ed 2013; 52: 14050-14054
- 5c Yoshida H. ACS Catal 2016; 6: 1799-1811
- 5d Carreras J, Caballero A, Pérez PJ. Chem Asian J 2019; 14: 329-343
- 5e Rej S, Das A, Panda TK. Adv Synth Catal 2021; 363: 4818-4840
- 6a Ding S, Song L-J, Chung LW, Zhang X, Sun J, Wu Y-D. J Am Chem Soc 2013; 135: 13835-13842
- 6b Ding S, Song L-J, Wang Y. et al. Angew Chem Int Ed 2015; 54: 5632-5635
- 6c Song L, Feng Q, Wang Y. et al. J Am Chem Soc 2019; 141: 17441-17451
- 6d Feng Q, Wu H, Li X. et al. J Am Chem Soc 2020; 142: 13867-13877
- 6e Tan Y-X, Li S, Song L, Zhang X, Wu Y-D, Sun J. Angew Chem Int Ed 2022; 61: e202204319
- 6f Feng Q, Li S, Li Z. et al. J Am Chem Soc 2022; 144: 14846-14855
- 6g Zhang C, Sung HHY, Williams ID, Wu Y-D, Sun J. J Am Chem Soc 2025; 147: 33350-33358
- 7 Tucker CE, Davidson J, Knochel P. J Org Chem 1992; 57: 3482-3485