Subscribe to RSS
DOI: 10.1055/a-2770-5422
Preparation of Nitrones by Hydrogenation of 2-(2-Nitro-1-phenylethyl)cyclohexanones
Authors
The work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Abstract
A practical and simple synthetic strategy for the synthesis of nitrones has been developed. Hydrogenation of 2-(2-nitro-1-phenylethyl)cyclohexanone by Pd/C afforded the corresponding nitrones in good to high yield and in high diastereoselectivity. The starting materials, 2-(2-nitro-1-phenylethyl)cyclohexanones, were easily prepared by the reaction of substituted cyclohexanones and nitroalkenes in the presence of 10 mol% of pyrrolidine.
Publication History
Received: 29 September 2025
Accepted after revision: 10 December 2025
Accepted Manuscript online:
11 December 2025
Article published online:
16 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Feuer H. ed. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis. 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2008: 129-434 Chapter 2
- 2 Murahashi S-I, Imada Y. Chem Rev 2019; 119: 4684
- 3a Amitina SA, Zaytseva EV, Dmitrieva NA. et al. Molecules 2020; 25: 3118
- 3b Olivera C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F. Med Res Rev 2018; 38: 1159
- 3c Nash KM, Rockenbauer A, Villamena FA. Chem Res Toxicol 2012; 25: 1581
- 3d Du L-B, Wang L-F, Liu Y-P. et al. Free Radic Res 2010; 44: 751
- 3e Villamena FA, Liu Y, Zweier JL. J Phys Chem A 2008; 112: 12607
- 3f Caldwell ST, Quin C, Edge R, Hartley RC. Org Lett 2007; 9: 3499
- 3g Caldwell ST, Quin C, Edge R, Hartley RC. Org Lett 2007; 9: 3499
- 3h Villamera FA, Hadad CM, Zweier JL. J Am Chem Soc 2004; 126: 1816
- 3i Karoui H, Clément J-L, Rockenbauter A, Siri D, Torado P. Tetrahedron Lett 2004; 45: 149
- 3j Janzen EG, Nutter DE. Magn Reson Chem 1997; 35: 131
- 3k Matasyoh JC, Schuler P, Stegmann HB, Poyer JL, West M, Janzen EG. Magn Reson Chem 1996; 34: 351
- 3l Ozawa T, Miura Y, Ueda J-I. Free Radic Biol Med 1996; 20: 837
- 3m Faucitano A, Buttafava A, Martinotti F, Berzero A. Res Chem Intermed 1996; 22: 439
- 3n Janzen EG, Zhang Y-K, Arimura M. J Org Chem 1995; 60: 5434
- 3o Janzen EG, Zhang Y-K, Haire DL. J Am Chem Soc 1994; 116: 3738
- 3p Janzen EG, Zhang Y-K, Haire DL. Magn Reson Chem 1994; 32: 711
- 4a Matassini C, Goti A. Chimia 2017; 71: 558
- 4b Prakashi P, Gravel E, Nguyen D-V, Namboothiri INN, Doris E. ChemCatChem 2017; 9: 2091
- 4c Parmeggiani C, Matassini C, Cardona F, Goti A. Synthesis 2017; 49: 2890
- 4d Nguyen D-V, Prakashi P, Gravel E, Doris E. RSC Adv 2016; 6: 89238
- 4e Matassini C, Parmeggiani C, Cardona F, Goti A. Org Lett 2015; 17: 4082
- 4f Yudha S, Kusama J, Asao N. Tetrahedron 2015; 71: 6459
- 4g D’Adamio G, Parmeggiani C, Goti A, Goti A. Eur J Org Chem 2015; 2015: 6541
- 4h Hou H, Zhu S, Pan F, Rueping M. Org Lett 2014; 16: 2872
- 4i Merino P, Delso I, Tejero T, Cardona F, Goti A. Synlett 2007; 2007: 2651
- 4j Cardona F, Corini L, Goti A. Lett Org Chem 2006; 3: 118
- 4k Saladino R, Nevi V, Cardona F, Goti A. Adv Synth Catal 2004; 346: 639
- 4l Cicchi S, Marradi M, Goti A, Brandi A. Tetrahedron Lett 2001; 42: 6503
- 4m Cicchi S, Corsi M, Goti A. J Org Chem 1999; 64: 7243
- 4n Cicchi S, Cardona F, Brandi A, Corsi M, Goti A. Tetrahedron Lett 1999; 40: 1989
- 4o Goti A, Cicchi S, Fedi V, Nannelli L, Brandi A. J Org Chem 1997; 62: 3119
- 4p Goti A, De Sarlo F, Romani M. Tetrahedron Lett 1994; 35: 6571
- 4q Saladino R, Neri V, Cardona F, Goti A. Tetrahedron Lett 1994; 35: 6571
- 4r Murahashi S-I, Mitsui H, Watanabe T, Zenki S-I. Tetrahedron Lett 1983; 24: 1049
- 5a Iida H, Imada Y, Murahashi S-I. Org Biomol Chem 2015; 13: 7599
- 5b Abrantes M, Goncalves IS, Pillinger M, Vurcho C, Cordero FM, Brandi A. Tetrahedron Lett 2011; 52: 7079
- 5c Forcato M, Mna M, Nugent WA. Eur J Org Chem 2010; 2010: 640
- 5d Abrantes M, Goncalves IS, Pillinger M, Vurcho C, Cordero FM, Brandi A. Tetrahedron Lett 2011; 52: 7079
- 5e Gella C, Ferrer È, Alibés R. et al. J Org Chem 2009; 74: 6365
- 5f Zonta C, Cazzola E, Mba M, Kicini G. Adv Synth Catal 2008; 350: 2503
- 5g Colladon M, Scarso A, Strukul G. Green Chem 2008; 10: 793
- 5h Imada Y, Iida H, Ono S, Masui Y, Murahashi S-I. Chem Asian J 2006; 1: 136
- 5i Sunazuka T, Shirahara T, Tsuchiya S. et al. Org Lett 2005; 7: 941
- 5j Goti A, Cardona F, Soldaini G. Org Synth 2005; 81: 204
- 5k Choudary BM, Reddy CV, Prakashi BV, Bharathi B, Kantam ML. J Mol Catal A Chem 2004; 217: 81
- 5l Looper RE, Williams RM. Angew Chem Int Ed 2004; 43: 2930
- 5m Tokuyama H, Kuboyama T, Fukuyama T. Org Synth 2003; 80: 207
- 5n Imada Y, Iida H, Ono S, Murahashi S-I. J Am Chem Soc 2003; 125: 2868
- 5o Goti A, Nannelli L. Tetrahedron Lett 1996; 37: 6025
- 5p Murray RW, Iyanar K, Chen J, Wraring JT. J Org Chem 1996; 61: 8099
- 5q Joseph R, Sudalai A, Ravindranathan T. Synlet 1995; 1995: 1177
- 5r Macantoni E, Petrini M, Polimanti O. Tetrahedron Lett 1995; 36: 3561
- 5s Sakaue S, Sakata Y, Nnishiyama Y, Ishii Y. Chem Lett 1992; 21: 289
- 5t Murahashi S-I, Shiota T, Imada Y. Org Synth 1992; 70: 265
- 5u Murahashi S-I, Mitsui H, Shiota T, Tusda T, Watanabe S. J Org Chem 1990; 55: 1736
- 5v Murray RW, Singh M. J Org Chem 1990; 55: 2954
- 5w Brandi A, Cicchi S, Paschetta V, Garcy DG. J Org Chem 1988; 53: 5856
- 5x Zajac WW, Walters TR, Darcy MG. J Org Chem 1988; 53: 2954
- 5y Murahashi S-I, Shiota T. Tetrahedron Lett 1987; 28: 2383
- 5z Mitsui H, Zenki S, Shiota T, Murahashi S-I. J Chem Soc M Chem Commun 1984; 874
- 6a Mirza-Aghayan M, Tavana MM, Boukherroub R. Tetrahedron Lett 2014; 55: 5471
- 6b Singh B, Jain SL, Rana BS, Khatri PK, Sain B. ChemCatChem 2010; 2: 1260
- 6c Singh B, Jain SL, Rana BS, Khatri PK, Sain B. Green Chem 2009; 1: 1941
- 6d Cardona F, Bonanni M, Soldaini G, Goti A. ChemSusChem 2008; 1: 327
- 6e Soldaini G, Cardona F, Goti A. Org Lett 2007; 9: 473
- 7a Murahashi S-I, Imada Y, Ohtake H. J Org Chem 1994; 59: 6170
- 7b Ohtake H, Imada Y, Murahashi S-I. Bull Chem Soc Jpn 1999; 72: 2737
- 8a Merino S, Guijarro FG, Alonso I, Ruano JLG, Cid MB. ACS Catal 2016; 6: 84
- 8b Michael RE, Chando KM, Sammakia T. J Org Chem 2015; 80: 6930
- 8c Pfeiffer JY, Beauchemin AM. J Org Chem 2009; 74: 8381
- 8d Colacino E, Num P, Colacino FM, Martinez J, Lamaty F. Tetrahedron 2008; 64: 5569
- 8e Andrade MM, Barros MT, Pinto RC. Tetrahedron 2008; 64: 10521
- 8f Cheng H-S, Seow A-H, Loh T-P. Org Lett 2008; 10: 2805
- 8g Wielechowska M, Dabrowska P, Plenkiewicz J. Tetrahedron Asymmetry 2006; 17: 1786
- 8h Jones RCF, Martin JN, Smith PA. Synlett 2000; 967
- 8i Merino P, Lanaspa A, Merchan FL, Tejero T. Tetrahedron: Asymmetry 1998; 9: 629
- 8j Kouklovsky C, Dirat O, Berranger T, Langlois Y, Tran-Huu-Dau ME. J Org Chem 1998; 63: 5123
- 8k Degiorgis F, Lombardo M, Trombini C. Tetrahedron 1997; 53: 1172
- 8l LeBel NA, Banucci EG. J Org Chem 1971; 36: 2440
- 9a Peacock LR, Chapman RSL, Sedgwick AC, Mahon MF, Amans D, Bull SD. Org Lett 2015; 17: 994
- 9b Zeng Q, Zhang L, Yang J, Xu B, Xiao Y, Zhang J. Chem Commun 2014; 50: 4203
- 9c Nakamura I, Onuma T, Kanazawa R, Nishigai Y, Terada M. Org Lett 2014; 16: 4198
- 9d Moran J, Pfeiffer JY, Gorelsky SI, Besuchemin AM. Org Lett 2009; 11: 1895
- 10 Yu W, Guo X, Song C, Zhao Z. J Catal 2019; 370: 96
- 11 Salehzadeh H, Mashhadizadeh MH. J Org Chem 2019; 84: 9307
- 12 Xing J, Tang H-Y, Chen J-L. et al. J Org Chem 2024; 89: 9841
- 13a Gautheron-Chapoulaud V, Pandya SU, Cividino P, Masson G, Py S, Vallée Y. Synlett 2001; 1281
- 13b Black DSC, Edwards GL, Evans RH, Keller PA, Laaman SM. Tetrahedron 2000; 56: 1889
- 13c Roubaund V, Mercier A, Olive G, Moigne FL, Tordo P. J Chem Soc, Perkin Trans 2 1997; 1827
- 13d Sato R, Ito K, Igarashi H. et al. Chem Lett 1997; 24: 1059
- 13e Gibson NI, Forrester AR, Brown C. J Chem Soc Perkin Trans 1995; 1: 507
- 13f Black DSC, Craig DC, Deb-Das RB, Kumar N, Wright TA. Aust J Chem 1993; 46: 1725
- 13g St D, Black C, Deb-Das RB, Kumar N. Aust J Chem 1992; 45: 611
- 13h St D, Black C, Deb-Das RB, Kumar N. Aust J Chem 1992; 45: 1051
- 13i St D, Black C, Craig DC, Deb-Das RB, Kumar N. Aust J Chem 1992; 45: 1879
- 14a Katahara S, Kobayashi S, Fujita K, Matsumoto T, Sato T, Chida N. J Am Chem Soc 2016; 138: 5246
- 14b Katahara S, Kobayashi S, Fujita K, Matsumoto T, Sato T, Chida N. Bull Chem Soc Jpn 2017; 90: 893
- 15 Cisneros L, Serna P, Corma A. Angew Chem Int Ed 2014; 53: 9306
- 16a Kuang Y, Maeda K, Matsubara R, Hayashi M. J Org Chem 2023; 88: 5791
- 16b Dong X, Matsubara R, Hayashi M. Synthesis 2025; 57: 800
- 17 Single diastereomer was used for each reaction.
- 18 Nitrone derived from cyclopentanone was not obtained.
- 19a Black DSC, Crozier RF, Davis VC. Synthesis 1975; 205
- 19b Confalone PN, Huie EMC. Org React 1988; 36: 1
- 20 In a flame-dried Schlenk flask, 2-(2-nitroethyl)cyclohexanone (1 mmol), 5% Pd/C (0.1 mmol, 10 mol%), and EtOH (10 mL) were added. The reaction atmosphere was changed to hydrogen gas by using a three-way stopcock (one is for the balloon with hydrogen gas, another is for the vacuum pump, and the other is for the Schlenk flask). The atmosphere was changed 10 times by quickly converting the stopcock position. After the atmosphere was changed, the reaction mixture was carefully stirred for 8 h at room temperature. The reaction mixture was filtered through Celite and was concentrated. The crude product was silica gel chromatographed to afford the corresponding nitrones.
- 21a It is considered that optically active 2-(2-nitro-1-phenylethyl)cyclohexanones can be synthesized via an asymmetric Michael addition cited below, and that the synthesis of optically active nitrones would also be possible when chiral compounds are employed as substrates. List B, Pojarliev P, Martin HJ. Org Lett 2001; 3: 2423
- 21b Enders D, Seki A. Synlett 2002; 26
- 21c Ishii T, Fujioka S, Sekiguchi Y, Kotsuki H. J Am Chem Soc 2004; 126: 9558