Subscribe to RSS
DOI: 10.1055/a-2765-9249
P(NMe₂)₃-Mediated Domino Cyclization/Functionalization of Dicyanoalkenes
Authors
Supported by: Start-up Fund of Zunyi Normal College BS[2022]4, BS[2022]5
We are grateful for financial support from Natural Science Research Project of Guizhou Department of Education ([2024]200), the Science and Technology Plan Project of Guizhou (ZK[2024]673), and the Start-up Fund of Zunyi Normal College (BS[2022]4, BS[2022]5).
Supported by: Natural Science Research Project of Guizhou Department of Education [2024]200 Supported by: Science and Technology Plan Project of Guizhou ZK[2024]673

Abstract
A P(NMe₂)₃-mediated domino reaction between dicyanoalkenes and benzoylformates has been developed. By switching between isatin- and tetralone-derived dicyanoalkenes, the protocol divergently furnishes either spirocyclopropyl oxindoles or α-functionalized dicyanoalkenes in up to 99% yield under mild conditions. Gram-scale experiments and a broad substrate scope highlight the synthetic utility of the transformation.
Keywords
Dicyanoalkenes - Benzoylformates - Spirocyclopropyl oxindoles - α-Functionalized dicyanoalkenes - P(NMe₂)₃-mediatedPublication History
Received: 10 November 2025
Accepted after revision: 05 December 2025
Accepted Manuscript online:
05 December 2025
Article published online:
24 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Miller EJ, Zhao W, Herr JD, Radosevich AT. Angew Chem Int Ed 2012; 51: 10605
- 1b Zhao W, Fink DM, Labutta CA, Radosevich AT. Org Lett 2013; 15: 3090
- 1c Wang SR, Radosevich AT. Org Lett 2015; 17: 3810
- 1d Zhao W. Org Synth 2015; 92: 267
- 1e Zhao W, Yan PK, Radosevich AT. J Am Chem Soc 2015; 137: 616
- 1f Jin S, Dang HT, Haug GC, Nguyen VD, Arman HD, Larionov OV. Chem Sci 2020; 11: 9101
- 1g Calcatelli A, Denton RM, Ball LT. Org Lett 2022; 24: 8002
- 1h Yuan C, Fu K, Tian K, Zhang Z, Guo J. Synlett 2023; 34: 1791
- 1i Huang KX, Chen ZY, Liu XG, Gao WC. Tetrahedron 2024; 162: 134126
- 1j Liu Y, Liu Q, Liu R. et al. Org Lett 2024; 26: 7902
- 1k Sakihara M, Shimoyama S, Kurosawa MB, Yamaguchi J. Bull Chem Soc Jpn 2024; 97: uoae078
- 1l Takeda N, Maeda R, Yasui M, Ueda M. Chem Commun 2024; 60: 172
- 1m Takeda N, Miyashita T, Hirokawa N, Yasui M, Ueda M. Chem Pharm Bull 2024; 72: 413
- 1n Wang N, Huang Y, Zi Y, Wang M, Huang W. J Org Chem 2024; 89: 3657
- 2a Chavannavar AP, Oliver AG, Ashfeld BL. Chem Commun 2014; 50: 10853
- 2b Wang SR, Radosevich AT. Org Lett 2015; 17: 3810
- 2c Zhang H, Liu R, Liu J. et al. New J Chem 2018; 42: 19720
- 2d Huang Y, Wang N, Wu ZG. et al. Org Lett 2023; 25: 7595
- 3a Zhou R, Yang C, Liu Y, Li R, He Z. J Org Chem 2014; 79: 10709
- 3b Wilson EE, Rodriguez KX, Ashfeld BL. Tetrahedron 2015; 71: 5765
- 3c Jiang J, Liu H, Lu CD, Xu YJ. J Org Chem 2016; 82: 811
- 3d Peng C, Zhai J, Xue M, Xu F. Org Biomol Chem 2017; 15: 3968
- 3e Zhou R, Zhang H, Liu J. et al. J Org Chem 2018; 83: 8272
- 3f Deng Y-H, Chu W-D, Shang Y-H, Yu K-Y, Jia Z-L, Fan C-A. Org Lett 2020; 22: 8376
- 3g Luo S-Q, Liu W, Ruan B-F. et al. Org Biomol Chem 2020; 18: 4599
- 3h Zhang J, Hao J, Huang Z, Han J, He Z. Chem Commun 2020; 56: 10251
- 3i Tan P, Wang H, Wang SR. Org Lett 2021; 23: 2590
- 3j Zhang J, Qiu Y, Zhang B, Huang Z, He Z. Org Lett 2021; 23: 1880
- 3k Sar S, Ghorai P. Org Lett 2023; 25: 1946
- 4a Zhang W-Z, Xia T, Yang X-T, Lu X-B. Chem Commun 2015; 51: 6175
- 4b Tan P, Wang SR. Org Lett 2019; 21: 6029
- 5a Rodriguez KX, Vail JD, Ashfeld BL. Org Lett 2016; 18: 4514
- 5b Zhou R, Zhang K, Han L, Chen Y, Li R, He Z. Chem Eur J 2016; 22: 5883
- 5c Zhou R, Han L, Zhang H, Liu R, Li R. Adv Synth Catal 2017; 359: 3977
- 5d Eckert KE, Ashfeld BL. Org Lett 2018; 20: 2315
- 5e Eckert KE, Lepore AJ, Ashfeld BL. Helv Chim Acta 2019; 102: e1900192
- 5f Liu R, Liu J, Cao J. et al. Org Lett 2020; 22: 6922
- 5g Gulotty EM, Rodriguez KX, Parker EE, Ashfeld BL. Chem Eur J 2021; 27: 10349
- 5h Du Y, Liu Y, Guo H, Liu R, Zhou R. Org Lett 2023; 25: 4776
- 5i Chu J, Wang H, Wang SR. Org Lett 2024; 27: 86
- 6 Wang SR, Radosevich AT. Org Lett 1926; 2013: 15
- 7a Shao J, Luo Q, Bi H, Wang SR. Org Lett 2021; 23: 459
- 7b Wang SR, Shao J, An C. Synthesis 2021; 53: 4030
- 7c Bi H, Wang SR. Org Lett 2022; 24: 6316
- 7d An C, Bi H, Wang SR. J Org Chem 2023; 88: 2670
- 7e Shao J, Fu Y, Wang SR. Org Lett 2023; 25: 555
- 7f Wang H, Wang SR. Org Lett 2023; 25: 8356
- 7g Zhu H, Yang X, Liu Y, Zhou H, Wang Y. Angew Chem Int Ed 2025; 64: e202423746
- 8a Wang J, Gao CF, Zhou H. et al. Adv Synth Catal 2025; 367: e70090
- 8b Singh S, Singh A, Pandya R, Vanka K, Singh RP. Chem Eur J 2025; 31: e202500671
- 8c Dhakar RL, Goud SB, Samanta S. J Org Chem 2025; 90: 3698
- 8d Hayashi Y, Han X, Mori N. Chem Eur J 2023; 29: e202301093
- 8e Gaviña D, Escolano M, Sotorríos L. et al. Adv Synth Catal 2023; 366: 970
- 8f Zhu L, Peng H, Guo Y. et al. Angew Chem Int Ed 2022; 61: e202202467
- 8g Goud SB, Guin S, Prakash M, Samanta S. Org Biomol Chem 2022; 20: 352
- 8h Das A, Justin Thomas KR. Green Chem 2022; 24: 4952
- 8i Bhajammanavar V, Sureshbabu P, Kesava Reddy M, Baidya M. Chem Asian J 2022; 17: e202200400
- 8j Bhajammanavar V, Mallik S, Choutipalli VSK, Subramanian V, Baidya M. Chem Commun 2022; 58: 2188
- 9 General experimental procedures for synthesis of compounds 3. To an ordinary vial fitted with a magnetic stir bar were added dicyanoalkene 1 (0.1 mmol, 1.0 equiv), benzoylformate 2 (0.12 mmol, 1.2 equiv), P(NMe₂)₃ (0.12 mmol, 1.2 equiv) and EA (1.0 mL). The mixture was stirred at room temperature for 12 h, then loaded directly onto a short silica-gel column and purified by flash chromatography to afford product 3.
- 10 Ethyl 3,3-dicyano-1′-methyl-2′-oxo-2-phenylspiro[cyclopropane-1,3′-indoline]-2-carboxylate (3a) white solid (35.7 mg, 96% yield); m.p. 152.1–153.9 °C. 1H NMR (600 MHz, CDCl3) δ 7.51–7.46 (m, 1H), 7.46–7.40 (m, 3H), 7.40–7.28 (m, 2H), 7.08–6.97 (m, 1H), 6.95–6.85 (m, 1H), 6.17 (dd, J = 7.8, 1.2 Hz, 1H), 4.36–4.29 (m, 1H), 4.28–4.17 (m, 1H), 3.39 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 166.9, 163.6, 145.3, 131.0, 130.7, 130.5, 129.3, 127.0, 126.3, 122.7, 117.9, 110.3, 109.8, 109.3, 63.7, 51.5, 45.2, 27.3, 24.2, 13.7. HRMS (ESI) calcd for C22H17N3O3Na+ (M+Na)+ 394.11621, found 394.11624.
- 11 General experimental procedures for synthesis of compounds 5. In an ordinary vial charged with a magnetic stirring bar, dicyanoalkenes 4 (0.1 mmol, 1.0 equiv), benzoylformates 2 (0.12 mmol, 1.2 equiv), P(NMe2)3 (0.12 mmol, 1.2 equiv) and EA (1.0 mL) was added, and then the mixture was stirred at r.t. for 12 h. the products 5 were isolated by flash chromatography on silica gel.
- 12 Ethyl 3,3-dicyano-3-(3,4-dihydronaphthalen-1-yl)-2-phenylpropanoate (5a) White solid (34.2 mg, 98% yield); m.p. 136.2–137.6 °C. 1H NMR (600 MHz, CDCl3) δ 7.82 (dd, J = 7.8, 1.1 Hz, 1H), 7.40–7.33 (m, 2H), 7.32–7.24 (m, 4H), 7.12–7.05 (m, 2H), 6.48 (dd, J = 5.7, 4.1 Hz, 1H), 4.73 (s, 1H), 4.38–4.17 (m, 2H), 2.69–2.54 (m, 1H), 2.46–2.31 (m, 1H), 2.30–2.08 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 168.3, 137.9, 135.3, 130.6, 129.7, 129.6, 129.5, 128.9, 128.9, 128.6, 127.1, 126.3, 123.2, 114.5, 113.5, 62.7, 54.3, 44.6, 27.6, 23.3, 14.1. HRMS (ESI) calcd for C23H20N2O2Na+ (M+Na)+ 379.14170, found 379.14185.
- 13 Scale-up experiment. To a 100-mL round-bottom flask containing a magnetic stir bar were added sequentially dicyanoalkene 1a or 4a (5.0 mmol, 1.0 equiv), benzoylformate 2a (6.0 mmol, 1.2 equiv), P(NMe₂)₃ (6.0 mmol, 1.2 equiv) and EA (50 mL). The resulting mixture was stirred at room temperature for 12 h. The residue was purified by flash column chromatography on silica gel to afford the corresponding product 3a (90% yield) or 5a (95% yield).
For recent examples of the use of dicyanoalkenes in domino reactions, see: