Subscribe to RSS
DOI: 10.1055/a-2759-6687
Dearomative Double Diels–Alder Reaction of C-3-Substituted Indenes and Arynes
Authors
TB thanks the CSIR for the CSIR-SRF fellowship (File No. 09/081(1387)/2019-EMR-I). VG thanks ANRF for the Core Research Grant (CRG/2022/003322).
Supported by: Anusandhan National Research Foundation (ANRF) CRG/2022/003322

Dedication
Dedicated to Prof. S. Chandrasekaran on the occasion of his 80th birthday.
Abstract
We report the dearomative [4+2]/[4+2] (double Diels–Alder) reaction of C-3-substituted indenes and benzyne to afford a new class of bridged polycyclic hydrocarbon derivatives of the methanotetraphene family. Without C-3 substitution, the reaction proceeded via a [4+2]/[2+2] cycloaddition reaction. DFT studies compared the decisive effect of the C-3 substituent on the importance of the substitution on product selectivity. A few synthetic transformations of the product have been demonstrated.
Publication History
Received: 05 October 2025
Accepted after revision: 29 November 2025
Accepted Manuscript online:
29 November 2025
Article published online:
24 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Peña D, Pérez D, Guitián E. Angew Chem Int Ed 2006; 45: 3579-3581
- 1b Wenk HH, Winkler M, Sander W. Angew Chem Int Ed 2003; 42: 502-528
- 1c Pellissier H, Santelli M. Tetrahedron 2003; 59: 701-730
- 2a Figueroa LPR, de Carvalho RL, Almeida RG. et al. RSC Med Chem 2025; 16: 694-708
- 2b Kim N, Choi M, Suh S-E, Chenoweth DM. Chem Rev 2024; 124: 11435-11522
- 2c Dhanaji JR, Samatha P, Raju S, Mainkar PS, Adepu R, Chandrasekhar S. Chem Commun 2023; 59: 2648-2651
- 2d Chari JV, Spence KA, Susick RB, Garg NK. Nat Commun 2021; 12: 3706
- 3 Bhojgude SS, Bhunia A, Biju AT. Acc Chem Res 2016; 49: 1658-1670
- 5 Shi J, Li L, Li Y. Chem Rev 2021; 121: 3892-4044
- 6a Yoshio H, Takaaki S, Hiroshi K. Chem Lett 1983; 12: 1211-1214
- 6b Maier J, Marder TB. Chem Eur J 2021; 27: 7978-7991
- 6c Chen J, Palani V, Hoye TR. J Am Chem Soc 2016; 138: 4318-4321
- 6d Diamond OJ, Marder TB. Org Chem Front 2017; 4: 891-910
- 6e Ross SP, Hoye TR. Nat Chem 2017; 9: 523-530
- 6f Arora S, Zhang J, Pogula V, Hoye TR. Chem Sci 2019; 10: 9069-9076
- 6g Chinta BS, Sneddon DS, Hoye TR. Chem Sci 2024; 15: 8181-8189
- 7a Shi F, Waldo JP, Chen Y, Larock RC. Org Lett 2008; 10: 2409-2412
- 7b Ikawa T, Takagi A, Goto M. et al. J Org Chem 2013; 78: 2965-2983
- 7c Gouthami P, Chavan LN, Chegondi R, Chandrasekhar S. J Org Chem 2018; 83: 3325-3332
- 8 Bhojgude SS, Thangaraj M, Suresh E, Biju AT. Org Lett 2014; 16: 3576-3579
- 9 Chen Z, Han X, Liang J-H, Yin J, Yu G-A, Liu S-H. Chin Chem Lett 2014; 25: 1535-1539
- 10a Ballav T, Barman S, Ganesh V. Org Lett 2025; 27: 4107-4111
- 10b Mondal S, Biswas K, Ganesh V. Org Lett 2025; 27: 3607-3611
- 10c Mondal S, Biswas K, Ganesh V. Adv Synth Catal 2024; 366: 3277-3282
- 10d Chakrabortty R, Ghosh S, Ganesh V. Org Lett 2024; 26: 792-797
- 10e Mondal S, Ballav T, Mohammad TS, Ganesh V. Org Lett 2023; 25: 3941-3945
- 11 Yang T, Nagase S, Akasaka T. et al. J Am Chem Soc 2015; 137: 6820-6828
- 12 Gericke KM, Chai DI, Bieler N, Lautens M. Angew Chem Int Ed 2009; 48: 1447-1451
- 13 Kakde BN, Kumari P, Bisai A. J Org Chem 2015; 80: 9889-9899
- 14 Ogata K, Atsuumi Y, Shimada D, Fukuzawa S-I. Angew Chem Int Ed 2011; 50: 5896-5899