Subscribe to RSS
DOI: 10.1055/a-2733-2114
Enantioselective Synthesis of 2-Azido-norfuranomycin from a d-Glucose-Derived Chiral Synthon
Authors

Abstract
The enantioselective synthesis of 2-azido-norfuranomycin (11) was accomplished from a d-glucose-derived chiral synthon (4). The absolute configuration at C3 and C4 of synthon 4 corresponds to that of the target molecule, confirming its utility in asymmetric synthesis. Key steps include 1,2-acetonide hydrolysis, oxidative cleavage (NaIO₄), reduction to a 2-azido-3-hydroxy olefin precursor, and ring-closing metathesis (RCM) to form the 3′,4′-dihydrofuran core. The method provides 2-azido-norfuranomycin in high yield and enantiopurity from readily available carbohydrate starting materials. A similar attempt was undertaken to obtain 2-azido-furanomycin 12.
Keywords
Furanomycin - Norfuranomycin - Non-proteinogenic amino acids - Antibiotics - Natural products - Total synthesisPublication History
Received: 07 October 2025
Accepted after revision: 27 October 2025
Accepted Manuscript online:
27 October 2025
Article published online:
20 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Chemistry and Biochemistry of the Amino Acids. 1st ed. London: Springer Dordrecht; 1985: 684
- 1b O’Donnel MJ. Tetrahedron 1988; 44 (17) xiii
- 1c Wagner I, Musso H. Angew Chem Int Ed Engl 1983; 22 (11) 816-828
- 2a Nelson DLCM. Lehninger Principles of Biochemistry: International Edition. 7th ed. New York, NY: W.H. Freeman; 2017: 71-103
- 2b Herbert RB. The Biosynthesis of Secondary Metabolites. Springer Science & Business Media; 1989
- 2c Izumi Y, Chibata I, Itoh T. Angew Chem Int Ed Engl 1978; 17 (03) 176-183
- 3a Finking R, Marahiel MA. Ann Rev Microbiol 2004; 58: 453-488
- 3b Caboche S, Pupin M, Leclère V, Fontaine A, Jacques P, Kucherov G. Nucleic Acids Res 2008; 36: D326-D331
- 4 Katagiri K, Tori K, Kimura Y, Yoshida T, Nagasaki T, Minato H. J Med Chem 1967; 10 (06) 1149-1154
- 5 Zimmermann PJ, Blanarikova I, Jäger V. Angew Chem Int Ed 2000; 39 (05) 910-912
- 6 Zimmermann PJ, Lee JY, Hlobilova I, Endermann R, Häbich D, Jäger V. Eur J Org Chem 2005; 2005 (16) 3450-3460
- 7 Kazmaier U, Pähler S, Endermann R, Häbich D, Kroll H-P, Riedl B. Bioorg Med Chem 2002; 10 (12) 3905-3913
- 8 Kohno T, Kohda D, Haruki M, Yokoyama S, Miyazawa T. J Biol Chem 1990; 265 (12) 6931-6935
- 9 Tanaka K, Tamaki M, Watanabe S. Biochim Biophys Acta – Nucleic Acids Protein Synth 1969; 195 (01) 244-245
- 10a Richmond MH. Bacteriol Rev 1962; 26 (04) 398-420
- 10b Jakubowski H, Goldman E. Microbiol Rev 1992; 56 (03) 412-429
- 10c Wang B, Lodder M, Zhou J. et al. J Am Chem Soc 2000; 122 (30) 7402-7403
- 10d Wilson MJ, Hatfield DL. Biochim Biophys Acta – Gene Struct Express 1984; 781 (03) 205-215
- 11 Rohokale R, Mane R. Organics 2024; 5 (04) 472-492
- 12 Lee JY, Schiffer G, Jäger V. Org Lett 2005; 7 (12) 2317-2320
- 13 Erdsack J, Krause N. Beilstein J Org Chem 2013; 9: 1936-1942
- 14a Joullie MM, Wang PC, Semple JE. J Am Chem Soc 1980; 102 (02) 887-889
- 14b Semple JE, Wang PC, Lysenko Z, Joullie MM. J Am Chem Soc 1980; 102 (25) 7505-7510
- 14c Robins MJ, Parker JR. Can J Chem 1983; 61 (02) 317-322
- 14d Chen SY, Joullie MM. J Org Chem 1984; 49 (10) 1769-1772
- 14e Kang S, Lee S. Chem Commun 1998; 7: 761-762
- 14f Zhang J, Clive DL. J Org Chem 1999; 64 (05) 1754-1757
- 14g VanBrunt MP, Standaert RF. Org Lett 2000; 2 (05) 705-708
- 14h Bandyopadhyay A, Pal BK, Chattopadhyay SK. Tetrahedron Asymmetry 2008; 19 (16) 1875-1877
- 14i Pilli RA, Riatto VB. J Braz Chem Soc 2008; 19 (03) 583-599
- 14j Tellam JP, Kociok-Köhn G, Carbery DR. Org Lett 2008; 10 (22) 5199-5202
- 14k Bartoli G, Di Antonio G, Fiocchi R, Giuli S, Marcantoni E, Marcolini M. Synthesis 2009; 2009 (06) 951-956
- 14l Tellam JP, Carbery DR. Tetrahedron Lett 2011; 52 (45) 6027-6029
- 14m Passiniemi M, Koskinen AMP. Tetrahedron Lett 2011; 52 (50) 6736-6738
- 14n Jung J-H, Yoon D-H, Lee K. et al. Org Biomol Chem 2015; 13 (30) 8187-8195
- 15 Chattopadhyay SK, Sarkar K, Karmakar S. Synlett 2005; 2005 (13) 2083-2085
- 16 Erdsack J, Krause N. Synthesis 2007; 2007 (23) 3741-3750
- 17a Masamune T, Ono M. Chem Lett 1975; 6: 625-626
- 17b Divanfard HR, Lysenko Z, Semple JE, Wang PC, Joullie MM, Blount JF. Heterocycles 1981; 16 (11) 1975-1985
- 17c Avenoza A, Busto JH, Canal N. et al. J Org Chem 2010; 75 (03) 545-552
- 17d Nelson JM, Vedejs E. Org Lett 2010; 12 (22) 5085-5087
- 18a Rohokale RS, Dhavale DD. Beilstein J Org Chem 2014; 10: 667-671
- 18b Markad PR, Rohokale RS, Pawar NJ, Dhavale DD. RSC Adv 2015; 5 (99) 81162-81167
- 18c Rohokale R. Carbohydr Res 2024; 543: 109223
- 19 Rohokale R, Dhavale D. Tetrahedron 2016; 72 (30) 4550-4555
- 20 Chaudhari VD, Ajish Kumar KS, Dhavale DD. Org Lett 2005; 7 (26) 5805-5807
- 21a Lam YY, Tan A, Kempe K, Boyd BJ. J Control Release 2025; 378: 880-898
- 21b Alamudi SH, Liu X, Chang Y-T. Biophys Rev 2021; 2: 2
- 22a Karjalainen OK, Koskinen AMP. Org Biomol Chem 2012; 10 (22) 4311-4326
- 22b Sehl T, Maugeri Z, Rother D. J Mol Catal B Enzym 2015; 114: 65-71
- 22c Lait SM, Rankic DA, Keay BA. Chem Rev 2007; 107 (03) 767-796
- 22d Bergmeier SC. Tetrahedron 2000; 56 (17) 2561-2576
- 23 Vougioukalakis GC, Grubbs RH. Chem Rev 2010; 110 (03) 1746-1787
- 24 Guérin C, Bellosta V, Guillamot G, Cossy J. Org Lett 2011; 13 (13) 3534-3537