Subscribe to RSS
DOI: 10.1055/a-2722-7001
Asymmetric Kumada–Tamao–Corriu Cross-Coupling Catalyzed by Chiral Pd(NHC) Complexes
Authors
We are grateful to the CNRS, Aix-Marseille Université and Centrale Méditerranée. We acknowledge the Agence Nationale de la Recherche (ANR-20-CE07-0030 cResolu) (Ph.D. grant P.G.) and the Région Provence-Alpes-Côte d’Azur (project 2022_03860 Chirasalt). Y.C. thank the China Scholarship Council for a Ph.D. grant.
Supported by: China Scholarship Council
Supported by: Agence Nationale de la Recherche 2022_03860,ANR-20-CE07-0030

Abstract
The Kumada–Tamao–Corriu cross-coupling reaction affording axially chiral biaryl compounds has been investigated with various chiral Pd(NHC) complexes (NHC = N-heterocyclic carbene). While the nature of the aryl halide partner did not have an influence on the enantioselectivity, the enantioenrichment of coupling products was found to be highly dependent on the structure of the arylmagnesium halide, and also on the chiral Pd(NHC) complex used. Thus, up to 63% ee was achieved using an atropisomeric Pd(NHC) complex. These data, along with role-reversal experiments of cross-coupling partners, suggest that the reductive elimination step is likely to be rate- and enantio-determining.
Publication History
Received: 03 June 2025
Accepted after revision: 13 October 2025
Accepted Manuscript online:
13 October 2025
Article published online:
21 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Mancinelli M, Bencivenni G, Pecorari D, Mazzanti A. Eur J Org Chem 2020; 4070-4086
- 1b Basilaia M, Chen MH, Secka J, Gustafson JL. Acc Chem Res 2022; 55: 2904-2919
- 2a Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew Chem Int Ed 2005; 44: 5384-5427
- 2b Cheng JK, Xiang S-H, Li S, Ye L, Tan B. Chem Rev 2021; 121: 4805-4902
- 3a Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord Chem Rev 2016; 308: 131-190
- 3b Cherney AH, Kadunce NT, Reisman SE. Chem Rev 2015; 115: 9587-9652
- 4a Goetzke FW, Dijk LV, Fletcher SP. Catalytic Asymmetric Suzuki−Miyaura Couplings. PATAI’S Chemistry of Functional Groups; John Wiley & Sons, Ltd.; 2019: 1-54
- 4b Hedouin G, Hazra S, Gallou F, Handa S. ACS Catal 2022; 12: 4918-4937
- 5a Liao G, Zhou T, Yao Q-J, Shi B-F. Chem Commun 2019; 55: 8514-8523
- 5b Choppin S, Wencel-Delord J. Acc Chem Res 2023; 56: 189-202
- 6 Zhao Q, Peng C, Wang Y-T, Zhan G, Han B. Org Chem Front 2021; 8: 2772-2785
- 7 Zhang X, Zhao K, Gu Z. Acc Chem Res 2022; 55: 1620-1633
- 8 Nguyen TT. Eur J Org Chem 2020; 147-155
- 9a Min X-L, Zhang X-L, Shen R, Zhang Q, He Y. Org Chem Front 2022; 9: 2280-2292
- 9b Nguyen TT. Org Biomol Chem 2019; 17: 6952-6963
- 10a Díez-Gonzalez S, Marion N, Nolan SN. Chem Rev 2009; 109: 3612-3676
- 10b Peris E. Chem Rev 2018; 118: 9988-10031
- 11a Fortman GC, Nolan SP. Chem Soc Rev 2011; 40: 5151-5169
- 11b Froese RDJ, Lombardi C, Pompeo M, Rucker RP, Organ MG. Acc Chem Res 2017; 50: 2244-2253
- 12a Jayaraj A, Raveedran AV, Latha AT, Priyadarshini D, Swamy PCA. Coord Chem Rev 2023; 478: 214922
- 12b Foster D, Borhanuddin SM, Dorta R. Dalton Trans 2021; 50: 17467-17477
- 12c Czerwiński PJ, Michalak M. Synthesis 2019; 51: 1689-1714
- 12d Janssen-Müller D, Schlepphorst C, Glorius F. Chem Soc Rev 2017; 46: 4845-4854
- 12e Wang F, Liu L-J, Wang W, Li S, Shi M. Coord Chem Rev 2012; 256: 804-853
- 13a Lee S, Hartwig JF. J Org Chem 2001; 66: 3402-3415
- 13b Kündig P, Seidel T, Jia Y, Bernardinelli G. Angew Chem Int Ed 2007; 46: 8484-8487
- 13c Jia Y-X, Hillgren JM, Watson EL, Marsden SP, Kündig EP. Chem Commun 2008; 4040-4042
- 13d Luan X, Mariz R, Robert C. et al. Org Lett 2008; 10: 5569-5572
- 13e Würtz S, Lohre C, Fröhlich R, Bergander K, Glorius F. J Am Chem Soc 2009; 131: 8344-8345
- 13f Luan X, Wu X, Drinkel E, Mariz R, Gatti M, Dorta R. Org Lett 2010; 12: 1912-1915
- 13g Liu L, Ishida N, Ashida S, Murakami M. Org Lett 2011; 13: 1666-1669
- 13h Wu L, Falivene L, Drinkel E. et al. Angew Chem Int Ed 2012; 51: 2870-2873
- 13i Spallek MJ, Riedel D, Rominger F, Hashmi ASK, Trapp O. Organometallics 2012; 31: 1127-1132
- 13j Katayev D, Jia Y-X, Sharma AK. et al. Chem Eur J 2013; 19: 11916-11927
- 13k Xu C, Feng Y, Wang L-R, Ma W-P, He Y-M, Fan Q-H. Organometallics 2020; 39: 1945-1960
- 14a Wu L-L, Salvador A, Ou A, Shi M-W, Skelton BW, Dorta R. Synlett 2013; 24: 1215-1221
- 14b Benhamou L, Besnard C, Kundig EP. Organometallics 2014; 33: 260-266
- 14c Shen D, Xu Y, Shi S-L. J Am Chem Soc 2019; 141: 14938-14945
- 15a Debono N, Labande A, Manoury E, Daran J-C, Poli R. Organometallics 2010; 29: 1879-1882
- 15b Shigeng G, Tang J, Zhang D, Wang Q, Chen Z, Weng L. J Organomet Chem 2012; 700: 223-229
- 15c Loxq P, Debono N, Gülcemal S. et al. New J Chem 2014; 38: 338-347
- 15d Li Y, Tang J, Gu J, Wang Q, Sun P, Zhang D. Organometallics 2014; 33: 876-884
- 15e Zhang D, He Y, Tang J. Dalton Trans 2016; 45: 11699-11709
- 15f Tang J, He Y, Yu J, Zhang D. Organometallics 2017; 36: 1372-1382
- 15g Zhang D, Yu J. Organometallics 2020; 39: 1269-1280
- 16a Sakaguchi S, Yoo KS, O’Neill J, Lee JH, Stewart T, Jung KW. Angew Chem Int Ed 2008; 47: 9326-9329
- 16b Yoo KS, O’Neill J, Sakaguchi S, Giles R, Lee JH, Jung KW. J Org Chem 2010; 75: 95-101
- 17a Kong L, Morvan J, Pichon D. et al. J Am Chem Soc 2020; 142: 93-98
- 17b Kong L, Chou Y, Jean M. et al. Adv Synth Catal 2021; 363: 4229-4238
- 17c Savchuk M, Bocquin L, Albalat M. et al. Chirality 2022; 33: 13-26
- 17d Kong L, Chou Y, Albalat M. et al. Dalton Trans 2023; 52: 8728-8736
- 17e Morvan J, Bouëtard D, Kong L. et al. Chem Eur J 2023; 29: e202300341
- 17f Chou Y, Vançon M, Albalat M. et al. Eur J Inorg Chem 2024; e202300780
- 18a Jumde VR, Iuliano A. Tetrahedron Asymmetry 2011; 22: 2151-2155
- 18b Wang T, Hao X-Q, Huang J-J, Wang K, Gong J-F, Song M-P. Organometallics 2014; 33: 194-205
- 18c Álvarez-Casao Y, Estepa B, Monge D. et al. Tetrahedron 2016; 72: 5184-5190
- 18d Byrne L, Sköld C, Norrby P-O, Munday RH, Turner AR, Smith PD. Adv Synth Catal 2021; 363: 259-267
- 19 See supporting information
- 20a Altenhoff G, Goddard R, Lehmann CW, Glorius F. J Am Chem Soc 2004; 126: 15195-15201
- 20b Würtz S, Glorius F. Acc Chem Res 2008; 41: 1523-1533
- 21 Melot R, Zuccarello M, Cavalli D. et al. Angew Chem Int Ed 2021; 60: 7245-7250
- 22 Wagen CC, McMinn SE, Kwan EE, Jacobsen EN. Nature 2022; 610: 680-686
- 23 Wilson JM, Cram DJ. J Org Chem 1984; 49: 4930-4943
- 24 Hayashi T, Hayashizaki K, Kiyoi T, Ito Y. J Am Chem Soc 1988; 110: 8153-8156
- 25 Knappke CEI, von Wangelin AJ. Chem Soc Rev 2011; 40: 4948-4962
- 26 Kleimark J, Hedström A, Larsson P-F, Johansson C, Norrby P-O. ChemCatChem 2009; 1: 152-161
- 27 Yang L-M, Huang L-F, Luh T-Y. Org Lett 2004; 6: 1461-1463
- 28 Shen X, Jones GO, Watson DA, Bhayana B, Buchwald SL. J Am Chem Soc 2010; 132: 11278-11287
- 29 Denmark SE, Chang W-TT, Houk KN, Liu P. J Org Chem 2015; 80: 313-366
For a detailed review on the synthesis of chiral biaryl compounds by asymmetric transition-metal catalyzed reactions, see:
For a general review on enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions, see:
For comprehensive reviews on catalysis using TM(NHC) complexes, see:
Selected reviews on chiral NHC in catalysis:
For selected references on the palladium-catalyzed enantioselective intramolecular α-arylation of amides with chiral NHC ligands, see:
To probe the enantio-determining step of nickel-based KTC coupling, similar experiments were conducted by Hayashi using a ferrocenyl-based phosphine ligand. The results, an important decay of the ee (from 80% to 16%), highlighted that the enantioselectivity arises also from the Grignard reagent rather than from the aryl bromide. It has been proposed that the enantio-determining step should be transmetalation:
For a reference suggesting a reductive elimination-controlled process in palladium-catalyzed Kumada-Tamao-Corriu coupling with alkynylmagnesium halide partners (Csp 3–Csp coupling), see: