Subscribe to RSS
DOI: 10.1055/a-2718-7304
The Nucleophile-Intercepted Meyer–Schuster Rearrangement of the (Z-enoate and Z-enal) Propargylic Alcohols
Authors
Financial support from ANRF (formerly SERB-DST) through CRG/2023/001303 grant.

Abstract
The classical Meyer–Schuster rearrangement (MSR) of propargylic alcohols to α,β-enones is a century-old transformation. However, its electrophile-intercepted version is a recent modification for the synthesis of α-functionalized enones. During the last decade (2015–2025), our research group at IIT Madras had developed a nucleophile-intercepted version of the classical MSR by employing the Z-enoate– as well as Z-enal–assisted propargylic alcohols. In this account, we have detailed the design, discovery, and development of this novel and robust synthetic process. This modification of the classical MSR has emerged as a powerful tool for the synthesis of highly functionalized α,β-enones, and structurally unique polycyclic frameworks such as butenolide-fused allenes and butenolide-based atropisomeric compounds, naphthofurans, benzofurans, 2-vinylfurans, 2-acylfurans, and carbazoles. This reaction strategy was further utilized for the partial as well as the total synthesis of several natural products, such as amycofuran, frondosin B, carbazoquinocins, lipocarbazoles, carazostatin, and rubrolides, respectively. Several fruitful control experiments and isolation of the relevant intermediates helped us understand the possible mechanistic pathway for this process. We hope that this modified version of the MSR will be further expanded in future.
Keywords
Meyer–Schuster rearrangement - Propargylic alcohols - α,β-Enones - Carbazoles - ButenolidesPublication History
Received: 01 September 2025
Accepted after revision: 08 October 2025
Accepted Manuscript online:
08 October 2025
Article published online:
10 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Swaminathan S, Narayanan KV. Chem Rev 1971; 71: 429
- 1b Engel DA, Dudley GB. Org Biomol Chem 2009; 7: 4149
- 1c Roy D, Tharra P, Baire B. Asian J Org Chem 2018; 7: 1015
- 1d Yao X, Wang T, Zhang Z. Asian J Org Chem 2018; 7: 1758
- 1e Trost BM, Tracy JS. Acc Chem Res 2020; 53: 1568
- 1f Justaud F, Hachem A, Grée R. Eur J Org Chem 2021; 2021: 514
- 1g Li Z-Z, Jiang S-J, He S-Y. et al. Org Chem Front 2024; 11: 809
- 2 Meyer KH, Schuster K. Chem Ber 1922; 55: 819
- 3a Edens M, Boerner D, Chase CR, Nass D, Schiavelli MD. J Org Chem 1977; 42: 3403
- 3b Trost BM, Livingston RC. J Am Chem Soc 1995; 117: 9586
- 3c Lorber CY, Osborn JA. Tetrahedron Lett 1996; 37: 853
- 3d Engel DA, Dudley GB. Org Lett 2006; 8: 4027
- 3e Trost BM, Chung CK. J Am Chem Soc 2006; 128: 10358
- 3f Nishizawa M, Hirakawa H, Nakagawa Y, Yamamoto H, Namba K, Imagawa H. Org Lett 2007; 9: 5577
- 3g Yu M, Li G, Wang S, Zhang L. Adv Synth Catal 2007; 349: 871
- 3h Cadierno V, Francos J, Gimeno J. Tetrahedron Lett 2009; 50: 4773
- 3i Pennell MN, Unthank MG, Turner P, Sheppard TD. J Org Chem 2011; 76: 1479
- 3j Song X-R, Song B, Qiu Y-F. et al. J Org Chem 2014; 79: 7616
- 3k Okamoto N, Sueda T, Yanada R. J Org Chem 2014; 79: 9854
- 3l Nikolaev A, Orellana A. Org Lett 2015; 17: 5796
- 3m Yang Y, Shen Y, Wang X, Zhang Y, Wang D, Shi X. Tetrahedron Lett 2016; 57: 2280
- 3n Kalek M, Himo F. J Am Chem Soc 2017; 139: 10250
- 3o Bae J, Lee W, Hwang HS. et al. ACS Catal 2023; 13: 10756
- 3p Liao L, An R, Li H, Xu Y, Wu J-J, Zhao X. Angew Chem 2020; 132: 11103
- 3q Mallick RK, Vangara S, Kommu N, Guntreddi T, Sahoo AK. J Org Chem 2021; 86: 7059
- 4a Chen S, Wang J. J Org Chem 2007; 72: 4993
- 4b Moran WJ, Rodríguez A. Org Biomol Chem 2012; 10: 8590
- 4c Ye L, Zhang L. Org Lett 2009; 11: 3646
- 4d Zhao M, Mohr JT. Tetrahedron 2017; 73: 4115
- 4e Tlahuext-Aca A, Hopkinson MN, Garza-Sanchez RA, Glorius F. Chem Eur J 2016; 22: 5909
- 4f Collins BSL, Suero MG, Gaunt MJ. Angew Chem 2013; 125: 5911
- 4g Yang Y, Hu W, Ye X, Wang D, Shi X. Adv Synth Catal 2016; 358: 2583
- 4h Egami H, Ide T, Fujita M, Tojo T, Hamashima Y, Sodeoka M. Chem Eur J 2014; 20: 12061
- 4i Lin Y-F, Wang C, Hu B-L, Qian P-C, Zhang X-G. Synlett 2017; 28: 707
- 4j Kaiser D, Veiros LF, Maulide N. Adv Synth Catal 2017; 359: 64
- 4k Zhang X-S, Jiao J-Y, Zhang X-H, Hu B-L, Zhang X-G. J Org Chem 2016; 81: 5710
- 4l Um J, Yun H, Shin S. Org Lett 2016; 18: 484
- 4m Zhu H-T, Fan M-J, Yang D-S. et al. Org Chem Front 2015; 2: 506
- 4n Alcaide B, Almendros P, Busto E, Luna A. Adv Synth Catal 2016; 358: 1526
- 4o Puri S, Thirupathi N, Reddy MS. Org Lett 2014; 16: 5246
- 4p Ramesh G, Ramulu BV, Balamurugan R. J Org Chem 2022; 87: 8633
- 4q Knoll DM, Zippel C, Hassan Z. et al. Dalton Trans 2019; 48: 17704
- 4r Banerjee S, Ambegave SB, Mule RD, Senthilkumar B, Patil NT. Org Lett 2020; 22: 4792
- 4s Zao M, Mohr JT. Tetrahedron 2017; 73: 4115
- 4t Trost BM, Luan X, Miller Y. J Am Chem Soc 2011; 133: 12824
- 4u Xiong Y-P, Wu M-Y, Zhang X-Y. et al. Org Lett 2014; 16: 1000
- 4v D'Oyley JM, Aliev AE, Sheppard TD. Angew Chem Int Ed 2014; 53: 10747
- 4w Yang Y, Shen Y, Wang X, Zhang Y, Wang D, Shi X. Tetrahedron Lett 2016; 57: 2280
- 4x Naveen N, Ramesh G, Balamurugan R. ChemistrySelect 2019; 4: 13610
- 4y Baldassari LL, Mantovani AC, Jardim M, Maryasin B, Lüdtke DS. Chem Commun 2021; 57: 117
- 4z Shen C-P, Zhu H-T, Li G-H. et al. Org Biomol Chem 2025; 23: 3870
- 5 Tharra P, Baire B. Chem Commun 2016; 52: 12147
- 6 Tharra P, Baire B. Org Biomol Chem 2017; 15: 5579
- 7 Gotta MF, Mayr’s H. J Org Chem 1998; 63: 9769
- 8 Tharra P, Baire B. Chem Eur J 2014; 2017: 23
- 9 Raikwar S, Baire B. Chem Asian J 2025; 20: e202500080
- 10 Tharra P, Baire B. Chem Commun 2016; 52: 14290
- 11a Li W-T, Nan W-H, Luo Q-L. RSC Adv 2014; 4: 34774
- 11b Wu Y-C, Liu L, Shaq Z, Wu Y-C, Wang D, Chen Y-J. Synthesis 2007; 1961
- 11c Liu C-R, Li M-B, Yang C-F, Tian S-K. Chem Eur J 2009; 15: 793
- 11d Yuan F-Q, Han F-S. Adv Synth Catal 2013; 355: 537
- 11e Li L, Yang Q, Wang Y, Jia Y. Angew Chem Int Ed 2015; 54: 6255
- 11f Xu X, Liu J, Li H, Li Y. Adv Synth Catal 2009; 351: 2599
- 11g Reddy CR, Krishna G, Kavitha N, Latha B, Shin D-S. Eur J Org Chem 2012; 5381
- 11h Reddy CR, Ranjan R, Kumaraswamy P, Reddy MD, Gree R. Curr Org Chem 2014; 18: 2603
- 11i Pareek A, Dada R, Rana M, Sharma AK, Yaragorla S. RSC Adv 2016; 6: 89732
- 11j Shao L, Wang Y-H, Zhang D-Y, Xu J, Hu X-P. Angew Chem Int Ed 2016; 55: 5014
- 12 Roy D, Tharra P, Baire B. Chem Commun 2022; 58: 10210
- 13 Bommanaboina B, Roy D, Baire B. RSC Adv 2024; 14: 27372
- 14 Roy D, Baire B. Chem Eur J 2021; 27: 4009
- 15 Roy D, Tharra P, Baire B. Org Lett 2021; 23: 5605
- 16 Tharra P, Baire B. J Org Chem 2015; 80: 8314
- 17 Gandhi S, Baire B. ChemistrySelect 2018; 3: 4490
For the review articles on Meyer-Schuster rearrangement see here:
For the electrophile intercepted Meyer-Schuster rearrangement, see: