Subscribe to RSS
DOI: 10.1055/a-2681-5943
Nickel-Catalyzed Reductive Cross-Coupling of Chlorobismuths with Aryl Halides
This work was supported by the Fundamental Research Funds for the Central Universities (22CX03031A).

Dedication
Dedicated to Professor Paul Knochel on the occasion of his 70th birthday.
Abstract
A straightforward and efficient method for the synthesis of valuable arylbismuthanes via nickel-catalyzed cross-electrophilic coupling of chlorobismuths with aryl halides has been reported. This cross-electrophile C(sp2)–Bi coupling reaction is conducted under mild reaction conditions and exhibits a broad substrate scope. Notably, the described protocol tolerates various sensitive functionalities including alcohol, nitrile, ester, ketone, and aldehyde. Moreover, the application of the generated arylbismuthanes to the Pd-catalyzed cross-coupling reaction is demonstrated.
Keywords
Cross-electrophilic coupling - Arylbismuthane - Aryl halide - C(sp2)–Bi coupling - Nickel catalystPublication History
Received: 11 July 2025
Accepted after revision: 11 August 2025
Accepted Manuscript online:
12 August 2025
Article published online:
01 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Mohan R. Nat Chem 2010; 2: 336
- 1b de Marcillac P, Coron N, Dambier G, Leblanc J, Moalic J-P. Nature 2003; 422: 876
- 2a Silvestru C, Breunig HJ, Althaus H. Chem Rev 1999; 99: 3277
- 2b Briand GG, Burford N. Chem Rev 1999; 99: 2601
- 2c Poddel’sky AI, Sharutin VV. J Organomet Chem 2022; 957: 122152
- 3a Gagnon A, Dansereau J, Le Roch A. Synthesis 2017; 49: 1707
- 3b Li L, Hu L, Sae-Jew J, Rawal VH. J Am Chem Soc 2024; 146: 18672
- 4a Geppert M, Müller M, Scherer KJ, Henzler J, Winter RF. Chem Eur J 2025; 31: e202500384
- 4b Tabassum M, Aima-tul-ayesha Yang B, Jia X, Zafar MN. J Clean Prod 2025; 494: 144868
- 4c Deuter KL, Balaba DJJ, Linseis M, Winter RF. Chem Commun 2025; 61: 3548
- 5a Keogan D, Griffith D. Molecules 2014; 19: 15258
- 5b Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Chem Soc Rev 2021; 50: 12037
- 5c Gonçalves Â, Matias M, Salvador JAR, Silvestre S. Int J Mol Sci 2024; 25: 1600
- 5d Meng R-Y, Ye Y-T, Xia H-Y, Wang S-B, Chen A-Z, Kankala RK. Coord Chem Rev 2025; 536: 216645
- 6a Moon HW, Cornella J. ACS Catal 2022; 12: 1382
- 6b Lopez E, Thorp SC, Mohan RS. Polyhedron 2022; 222: 115765
- 6c Mato M, Cornella J. Angew Chem Int Ed 2024; 63: e202315046
- 6d Lichtenberg C, Martínez S. Synlett 2024; 35: 1530
- 6e Ni S, Spinnato D, Cornella J. J Am Chem Soc 2024; 146: 22140
- 6f Wang R, Martínez S, Schwarzmann J. et al. J Am Chem Soc 2024; 146: 22122
- 6g Béland VA, Nöthling N, Leutzsch M, Cornella J. J Am Chem Soc 2024; 146: 25409
- 7 Cui L, Bi C, Fan Y. et al. Inorg Chim Acta 2015; 437: 41
- 8 Gaynor D, Griffith DM. Dalton Trans 2012; 41: 13239
- 9 Pathak A, Blair VL, Ferrero RL, Mehring M, Andrews PC. Chem Commun 2014; 50: 15232
- 10 Challenger F. J Chem Soc, Trans 1914; 105: 2210
- 11a Barton DHR, Bhatnagar NY, Finet J-P, Motherwell WB. Tetrahedron 1986; 42: 3111
- 11b Matano Y, Miyamatsu T, Suzuki H. Organometallics 1951; 1996: 15
- 12a Jurrat M, Maggi L, Lewis W, Ball LT. Nat Chem 2020; 12: 260
- 12b Senior A, Ball LT. Synlett 2021; 32: 235
- 12c Fox A, Ball LT. Org Process Res Dev 2024; 28: 632
- 13 Louis-Goff T, Rheingold AL, Hyvl J. Organometallics 2020; 39: 778
- 14a Liu J, Ye Y, Sessler JL, Gong H. Acc Chem Res 1833; 2020: 53
- 14b Pang X, Su P-F, Shu X-Z. Acc Chem Res 2022; 55: 2491
- 14c Gong Y, Hu J, Qiu C, Gong H. Acc Chem Res 2024; 57: 1149
- 14d Ehehalt LE, Beleh OM, Priest IC. et al. Chem Rev 2024; 124: 13397
- 14e Richmond E, Moran J. Synthesis 2018; 50: 499
- 14f Pang X, Peng X, Shu X-Z. Synthesis 2020; 52: 3751
- 14g Pang X, Shu X-Z. Chin J Chem 2023; 41: 1637
- 15a Duan J, Wang K, Xu G-L. et al. Angew Chem Int Ed 2020; 59: 23083
- 15b Zhang L, Oestreich M. Angew Chem Int Ed 2021; 60: 18587
- 15c Xing M, Cui H, Zhang C. Org Lett 2021; 23: 7645
- 15d Duan J, Wang Y, Qi L, Guo P, Pang X, Shu X-Z. Org Lett 2021; 23: 7855
- 15e Zhao Z-Z, Pang X, Wei X-X, Liu X-Y, Shu X-Z. Angew Chem Int Ed 2022; 61: e20220021
- 15f Na J-H, Du H-J, Jing J-W. et al. J Catal 2024; 437: 115636
- 16a Su P-F, Wang K, Peng X, Pang X, Guo P, Shu X-Z. Angew Chem Int Ed 2021; 60: 26571
- 16b Guo P, Pang X, Wang K. et al. Org Lett 1802; 2022: 24
- 16c Chen H, Zhu C, Yue H, Rueping M. ACS Catal 2023; 13: 6773
- 17a Zhang D, Tang T, Zhang Z. et al. ACS Catal 2022; 12: 854
- 17b Peng L, Zhao Y, Chen J. et al. J Org Chem 2024; 89: 183
- 17c Le L, Yin M, Zeng H. et al. Org Lett 2024; 26: 344
- 17d Zeng H, Le L, Zhou W. et al. J Org Chem 2025; 90: 7043
- 18 Chen Y, Li S, Le L. et al. Org Lett 2025; 27: 3578
- 19 Huang L, Ackerman LKG, Kang K, Parsons AM, Weix DJ. J Am Chem Soc 2019; 141: 10978
- 20 Wolfe JP, Singer RA, Yang BH, Buchwald SL. J Am Chem Soc 1999; 121: 9550