Subscribe to RSS
DOI: 10.1055/a-2680-2262
Synthesis of Highly E-Selective 2-Alkenylquinolines via Lewis Acid–Catalyzed Tandem Cyclization and Olefination of Bis(trimethylsilyl)butenynylanilines with Aldehydes
A.C. gratefully acknowledges the Ministry of Education (MoE) for Prime Ministers Research Fellowship (PMRF). The authors are grateful to the Science and Engineering Research Board (SERB), New Delhi (Grant No. CRG/2022/001028) for financial support.

Abstract
A novel and efficient tandem strategy has been unveiled for the synthesis of 2-alkenylquinolines from bis(trimethylsilyl)butenynylanilines and aldehydes through Lewis acid–catalyzed cyclization. This innovative approach shows broad functional group tolerance, enabling access to a wide variety of 2-alkenylquinoline derivatives. Later, scalability and successful postsynthetic modification toward pharmaceutically relevant quinolines highlight the versatility and practical utility of this protocol.
Keywords
Quinolines - Aldehydes - Peterson olefination - Cyclization - Lewis acid - 2-StyrylquinolinePublication History
Received: 29 June 2025
Accepted after revision: 08 August 2025
Accepted Manuscript online:
08 August 2025
Article published online:
25 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Rajesh YB. Heterocycles—Synthesis and Biological Activities. Intech Open; 2018
- 1b Ajani OO, Iyaye KT, Ademosun OT. RSC Adv 2022; 12: 18594
- 1c Chu XM, Wang C, Liu W. et al. Eur J Med Chem 2019; 161: 101
- 1d Kaur T, Bhandari DD. Biointerface Res Appl Chem 2023; 13: 355
- 2a Shang XF, Morris-Natschke SL, Yang GZ. et al. Med Res Rev 2018; 38: 1614
- 2b Musiol R. Expert Opin Drug Discovery 2017; 12: 583
- 2c Matada BS, Pattanashettar R, Yernale NG. Bioorg Med Chem 2021; 32: 115973
- 2d Raut K, Thombare R, Zagade P, Kumbhar N. World J Pharm Res 2020; 9: 674-689
- 2e Snehi V, Verma H, Saha S, Kumar S, Pathak D. Int J Sci Healthcare Res 2023; 8: 45-66
- 3a Li Q, Min J, Ahn YH. et al. ChemBioChem 2007; 8: 1679
- 3b Michael JP. Nat Prod Rep 2005; 22: 627
- 3c Gopinath VS, Pinjari J, Dere RT. et al. Eur J Med Chem 2013; 69: 527
- 3d Balamurugan G, Ramesh R. ChemCatChem 2022; 14: e202101455
- 3e Zwaagstra ME, Schoenmakers SHHF, Nederkoorn PHJ, Gelens E, Timmerman H, Zhang M-Q. J Med Chem 1998; 41: 1439
- 3f Orozco D, Kouznetsov VV, Bermúdez A, Méndez LYV, Salgado ARM, Gómez CMM. RSC Adv 2020; 10: 4876-4898
- 3g Mrozek-Wilczkiewicz A, Kuczak M, Malarz K, Cieślik W, Spaczyńska E, Musiol R. Eur J Med Chem 2019; 177: 338-349
- 4 Ferlin F, Zangarelli A, Lilli S, Santoro S, Vaccaro L. Green Chem 2021; 23: 490
- 5 Thorve PR, Maji B. Org Lett 2021; 23: 542
- 6 Das J, Vellakkaran M, Sk M, Banerjee D. Org Lett 2019; 21: 7514
- 7 Halder A, Maiti D, Sarkar S. Chem Asian J 2020; 15: 577
- 8 The crystallographic data for compound 3ac have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 2466251
- 9a Goulart TA, Recchi AM, Back DF, Zeni G. Adv Synth Catal 1989; 2022: 364
- 9b Tiwari SK, Nazeef M, Verma A. et al. Mol Diversity 2021; 26: 1259
- 10 Davies SG, Fletcher AM, Houlsby IT, Roberts PM, Thomson JE, Zimmer D. J Nat Prod 2018; 81: 2731