Subscribe to RSS
DOI: 10.1055/a-2655-4268
Activation of Strong Bonds Enabled by Arene π-Coordination
Supported by: MEXT JP24H01101
Supported by: RIKEN Incentive Research Project
Supported by: JSPS JP22K05104
Funding Information This work was supported by JSPS KAKENHI Grant-in-Aid for Transformative Research Areas No. JP24H01101 (Digi-TOS) (L.I.), JSPS KAKENHI Grant Number JP22K05104 (Y.M.), and RIKEN Incentive Research Project grant (Y.M.).

Abstract
π-Coordination of an arene to a metal fragment decreases its electron density and has been often utilized to accelerate nucleophilic aromatic substitution, for example. By contrast, this strategy has only recently been applied to transition metal–catalyzed C–H bond functionalization. This short review summarizes the development of the field, with the hope to further stimulate interest in this methodology. Transition metal–catalyzed and –mediated C–H activation of arenes η6-coordinated to chromium and other metals is mainly discussed; to highlight the potential of this strategy for organic synthesis, the activation of other strong bonds, with a focus on C–O bond activation, is also presented.
Keywords
π-Coordination - η6-Complex - Arene functionalization - C–H bond activation - C–O bond activation - C–Halogen bond activationPublication History
Received: 31 March 2025
Accepted after revision: 15 July 2025
Accepted Manuscript online:
15 July 2025
Article published online:
15 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Dyker G. Handbook of C–H Transformations. Weinheim: Wiley-VCH: 2005: 2-661
- 1b Dixneuf PH, Doucet H. Topics in Organometallic Chemistry: C–H Bond Activation and Catalytic Functionalization. Berlin, Heidelberg: Springer; 2016
- 1c Catalytic transformations via C–H activation. In: Science of Synthesis Yu J-Q. ed. Vol. 1–2 Thieme; Stuttgart: 2016
- 1d Maiti D. Handbook of CH Functionalization. Weinheim: Wiley-VCH; 2022
- 2a Yamaguchi J, Yamaguchi AD, Itami K. Angew Chem Int Ed 2012; 51: 8960
- 2b Wencel-Delord J, Glorius F. Nat Chem 2013; 5: 369
- 2c Hartwig JF. J Am Chem Soc 2016; 138: 2
- 2d Lam NYS, Wu K, Yu JQ. Angew Chem Int Ed 2021; 60: 15767
- 2e Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat Rev Chem 2021; 5: 522
- 2f Zhang L, Ritter T. J Am Chem Soc 2022; 144: 2399
- 2g Docherty JH, Lister TM, McArthur G. et al. Chem Rev 2023; 123: 7692
- 3 Luo Y-R. Comprehensive Handbook of Chemical Bond Energies. Boca Raton: CRC Press; 2007
- 4 Rej S, Das A, Chatani N. Coord Chem Rev 2021; 431: 213683
- 5 Sambiagio C, Schonbauer D, Blieck R. et al. Chem Soc Rev 2018; 47: 6603
- 6a Hartwig JF, Larsen MA. ACS Cent Sci 2016; 2: 281
- 6b Khake SM, Chatani N. Chem 2020; 6: 1056
- 6c Kaltenberger S, van Gemmeren M. Acc Chem Res 2023; 56: 2459
- 7a Berger A, Djukic JP, Michon C. Coord Chem Rev 2002; 225: 215
- 7b Kündig EP. Topics in Organometallic Chemistry: Transition Metal Arene π-Complexes in Organic Synthesis and Catalysis. Heidelberg: Springer-Verlag Berlin; 2004
- 7c Rosillo M, Domínguez G, Pérez-Castells J. Chem Soc Rev 2007; 36: 1589
- 7d Takemoto S, Matsuzaka H. Tetrahedron Lett 2018; 59: 697
- 7e Walton JW, Wilkinson LA. Organomet Chem 2019; 42: 125
- 7f Williams LJ, Bhonoah Y, Wilkinson LA, Walton JW. Chem Eur J 2020; 27: 3650
- 8 Chen K, Shi H. Acc Chem Res 2024; 57: 2194
- 9 Prim D, Andrioletti B, Rose-Munch F, Rose E, Couty F. Tetrahedron 2004; 60: 3325
- 10a Shvydkiy NV, Perekalin DS. Coord Chem Rev 2020; 411: 213238
- 10b Akana-Schneider B, Guo Y, Parnitzke B, Derosa J. Dalton Trans 2024; 53: 18819
- 11 Hu F, Szostak M. ChemCatChem 2015; 7: 1061
- 12 Fuchter MJ, Judge DK, Weimar M, White AJP. Dalton Trans 2013; 42: 5615
- 13 Ricci P, Krämer K, Cambeiro XC, Larrosa I. J Am Chem Soc 2013; 135: 13258
- 14 Maurer C, Fleischer R, Mandal A. et al. Chem Asian J 2025; 20: e202500139
- 15 Mandal A, Maurer C, Plett C. et al. J Am Chem Soc 2025; 147: 15281
- 16a Lafrance M, Rowley NC, Woo TK, Fagnou K. J Am Chem Soc 2006; 128: 8754
- 16b Lapointe D, Fagnou K. Chem Lett 2010; 39: 1118
- 16c Ackermann L. Chem Rev 2011; 111: 1315
- 16d Gorelsky SI. Coord Chem Rev 2013; 257: 153
- 17 Lafrance M, Fagnou K. J Am Chem Soc 2006; 128: 16496
- 18 Ricci P, Krämer K, Larrosa I. J Am Chem Soc 2014; 136: 18082
- 19 Whitaker D, Batuecas M, Ricci P, Larrosa I. Chem Eur J 2017; 23: 12763
- 20 Majumdar KC. RSC Adv 2011; 1: 1152
- 21 Batuecas M, Luo J, Gergelitsová I. et al. ACS Catal 2019; 9: 5268
- 22 Wöste TH, Oestreich M. Chem Eur J 2011; 17: 11914
- 23 Whitaker D, Burés J, Larrosa I. J Am Chem Soc 2016; 138: 8384
- 24 Panigrahi A, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal 2020; 10: 2100
- 25a Kündig EP, Perret C, Spichiger S, Bernardinelli G. J Organomet Chem 1985; 286: 183
- 25b Howell JAS, Ashford NF, Dixon DT, Kola JC, Albright TA, Kang SK. Organometallics 1852; 1991: 10
- 26 Mutoh Y, Khalaf R, Asako S, Ilies L. ChemRxiv.
- 27 Melnikov S, Hwang D, Park B, Lutz M, Baik M-H, Broere DL. J Chem Sci. 2025
- 28 Wilkinson LA, Pike JA, Walton JW. Organometallics 2017; 36: 4376
- 29 Chan APY, Jakoobi M, Wang C. et al. J Am Chem Soc 2022; 144: 11564
- 30 For benzylic C–H functionalization using an η6-arene chromium complex as a benzyl anion equivalent, see refs 7d and 11, and Zhu's H, Wu Y, Mao Y, Xu J, Walsh P, Shi H. Chem Soc Rev 2025; 54: 2520-2542
- 31 Wu W-Q, Lin Y, Li Y, Shi H. J Am Chem Soc 2023; 145: 9464
- 32 Saper NI, Ohgi A, Small DW, Semba K, Nakao Y, Hartwig JF. Nat Chem 2020; 12: 276
- 33 Binnani C, Singh SK. Arene–ruthenium(II) complexes in C–H functionalization: role of ligands. In: Handobook of CH Functionalization Maiti D. ed. WILEY-VCH: GmbH; 2023: 1-35
- 34 D’Amato EM, Neumann CN, Ritter T. Organometallics 2015; 34: 4626
- 35 Odena C, Perez-Jimenez M, Lin R, Chirik PJ. Organometallics 2024; 43: 3067
- 36 Gilbert AM, Wulff WD. J Am Chem Soc 1994; 116: 7449
- 37 Diao H, Shi Z, Liu F. Synlett 2021; 32: 1494
- 38 Sergeev AG, Hartwig JF. Science 2011; 332: 439
- 39 Saper NI, Hartwig JF. J Am Chem Soc 2017; 139: 17667
- 40 Sawatlon B, Wititsuwannakul T, Tantirungrotechai Y, Surawatanawong P. Dalton Trans 2014; 43: 18123
- 41 Kelley P, Lin S, Edouard G, Day MW, Agapie T. J Am Chem Soc 2012; 134: 5480
- 42a Chen K, Kang Q-K, Li Y, Wu W-Q, Zhu H, Shi H. J Am Chem Soc 2022; 144: 1144
- 42b Chen K, Ma Y, Lin Y, Li JY, Shi H. J Am Chem Soc 2024; 146: 15833
- 43a Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem Rev 2015; 115: 931
- 43b Eisenstein O, Milani J, Perutz RN. Chem Rev 2017; 117: 8710
- 44a Grushin VV, Alper H. Chem Rev 1994; 94: 1047
- 44b Littke AF, Fu GC. Angew Chem Int Ed 2002; 41: 4176
- 45a Houghton RP, Voyle M, Price R. J Chem Soc Perkin Trans 1984; 1: 925
- 45b Otsuka M, Endo K, Shibata T. Chem Commun 2010; 46: 336
- 45c Otsuka M, Yokoyama H, Endo K, Shibata T. Synlett 2010; 2010: 2601
- 45d Walton JW, Williams JMJ. Chem Commun 2015; 51: 2786
- 45e Konovalov AI, Gorbacheva EO, Miloserdov FM, Grushin VV. Chem Commun 2015; 51: 13527
- 45f Mueller BRJ, Schley ND. Dalton Trans 2020; 49: 10114
- 45g Schulte T, Wang Z, Li CC. et al. J Am Chem Soc 2024; 146: 15825
- 46 Lin H, Chen Q, Cao L, Yang L, Wu YD, Li C. J Org Chem 2006; 71: 3328
- 47 Nagata M, Itonaga K, Mutoh Y, Endo K, Ilies L. Chem Lett 2024; 53: upae233
Selected reviews:
Selected reviews:
Selected examples of SNAr through catalytic π-coordination: