Subscribe to RSS
DOI: 10.1055/a-2652-7151
Reactions of Unprotected Carbohydrates at the Anomeric Carbon: Methodologies for Protecting Group-Free Synthesis of Glycosides
Supported by: Science and Engineering Research Board CRG/2022/007786

Abstract
A direct functionalization of the anomeric carbon of unprotected, hydroxy group–abundant carbohydrates is desirable, as it circumvents the need to overcome protecting group interventions and enables the formation of glycosides in a step- and atom-economical manner. The primary, secondary hydroxy, and hemiacetal functionalities encounter reaction selectivities to permit the formation of glycosides selectively, without affecting the remaining sites. The advantage lies in the reactivity differences that provide a manner by which to achieve the desired selective functionalization, namely, that of the hemiacetal in the present context. This article provides a comprehensive overview of recent advancements in the protecting group-free synthesis of glycosides from the unprotected, hydroxy functionality–rich carbohydrates, primarily, mono- and disaccharides. The discussion highlights topical advancements made with particular emphasis on the concept and the mechanistic rationale. The article is organized with a brief introduction; discussions on the (i) direct synthesis of O-glycosides; (ii) base-mediated-; and (iii) direct anomeric functionalization of unprotected carbohydrates; (iv) formation of glycosyl esters; (v) glycosyl phosphates; (vi) N-glycosyl amides; and (vii) C-glycosides that are formed from protecting groups-free carbohydrates. An outlook of the present status of developments is given in the conclusion.
Publication History
Received: 03 June 2025
Accepted after revision: 10 July 2025
Accepted Manuscript online:
10 July 2025
Article published online:
15 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Varki A. Glycobiology 2017; 27: 3-49
- 2 Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Science 2001; 291: 2370-2376
- 3 Steen P, Rudd PM, Dwek RA, Opdenakker G. Crit Rev Biochem Mol Biol 1998; 33: 151-208
- 4 Taylor CM. Tetrahedron 1998; 54: 11317-11362
- 5 Gamblin DP, Scanlan EM, Davis BG. Chem Rev 2009; 109: 131-163
- 6 Norris P. Curr Top Med Chem 2008; 8: 101-113
- 7 Crawford CJ, Seeberger PH. Chem Soc Rev 2023; 52: 7773-7801
- 8 Nielsen MM, Pedersen CM. Chem Rev 2018; 118: 8285-8358
- 9 Li C, Wang LX. Chem Rev 2018; 118: 8359-8413
- 10 Dimakos V, Taylor MS. Chem Rev 2018; 118: 11457-11517
- 11 Yamatsugu K, Kanai M. Chem Rev 2023; 123: 6793-6838
- 12 Lairson LL, Henrissat B, Davies GJ, Withers SG. Annu Rev Biochem 2008; 77: 521-555
- 13 Volbeda AG, van der Marel GA, Codée JDC. In Protecting Groups Strategies and Applications in Carbohydrate Chemistry. Vidal S. ed. Ch. 1 Wiley-VCH; 2019: 1-24
- 14 Guo J, Ye XH. Molecules 2010; 15: 7235-7265
- 15 Downey AM, Hocek M. Beilstein J Org Chem 2017; 13: 1239-1279
- 16 Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MM. ChemBioChem 2017; 18: 574-612
- 17 Juaristi E, Cuevas G. Tetrahedron 1992; 48: 5019-5087
- 18 Wiberg KB, Bailey WF, Lambert KM, Stempel ZD. J Org Chem 2018; 83: 5242-5255
- 19 Ha S, Gao J, Tidor B, Brady JW, Karplus M. J Am Chem Soc 1991; 113: 1553-1557
- 20 Usabiaga I, González J, León I, Arnaiz PF, Cocinero EJ, Ferńandez JA. J Phys Chem Lett 2017; 8: 1147-1151
- 21a Liu W, Tan Y, Jones LO. et al. J Am Chem Soc 2021; 143: 15688-15700
- 21b Gattuso G, Menzer S, Nepogodiev SA, Stoddart JF, Williams DJ. Angew Chem Int Ed 1997; 36: 1451-1454
- 22 Fischer E. Ber Dtsch Chem Ges 1895; 28: 1145-1167
- 23 Cinget F, Schmidt RR. Synlett 1993; 168-170
- 24 Hanessian S, Lou B. Chem Rev 2000; 100: 4443-4463
- 25 Euzen R, Ferrières V, Plusquellec D. J Org Chem 2005; 70: 847-855
- 26 Mamidyala SK, Finn MG. J Org Chem 2009; 74: 8417-8420
- 27 Edgar LJG, Dasgupta S, Nitz M. Org Lett 2012; 14: 4226-4229
- 28 Meng B, Zhu Z, Baker DC. Org Biomol Chem 2014; 12: 5182-5191
- 29 Feng S, Bagia C, Mpourmpakis G. J Phys Chem A 2013; 117: 5211-5219
- 30a Christensen JJ, Rytting JH, Izatt RM. J Chem Soc B 1970; 1646-1648
- 30b Izatt RM, Rytting JH, Hansen LD, Christensen JJ. J Am Chem Soc 1966; 88: 2641-2643
- 31 Klotz W, Schmidt RR. Liebigs Ann Chem 1993; 683-690
- 32 Kardos N, Luche J-L. Carbohydr Res 2001; 332: 115-131
- 33 Dey K, Jayaraman N. Chem Commun 2022; 58: 2224-2227
- 34 Angyal SJ, Angyal CL. J Chem Soc 1952; 1461-1466
- 35 Batts BDB, Spinner E. Aust J Chem 1969; 22: 2595-2610
- 36 Despotović I, Maksić ZB, Vianello R. New J Chem 2007; 31: 52-62
- 37 Matviitsuk A, Berndt F, Mahrwald R. Org Lett 2014; 16: 5474-5477
- 38 Dey K, Jayaraman N. Carbohydr Res 2022; 520: 108610 (1–9)
- 39 Dey K, Jayaraman N. Org Biomol Chem 2024; 22: 5134-5149
- 40a Banait NS, Jencks WP. J Am Chem Soc 1991; 113: 7951-7958
- 40b Bojarová P, Rosencrantz RR, Elling L, Křen V. Chem Soc Rev 2013; 42: 4774-4797
- 40c Alexander SR, Fairbanks AJ. Org Biomol Chem 2016; 14: 6679-6682
- 41a Pelletier G, Zwicker A, Allen CL, Schepartz A, Miller SJ. J Am Chem Soc 2016; 138: 3175-3182
- 41b Wadzinski TJ, Steinauer A, Hi L, Pelletier G, Schepartz A, Miller SJ. Nat Chem 2018; 10: 644-651
- 42 Zhang G-L, Gadi MR, Cui X. et al. GreenChem 2021; 23: 2907-2912
- 43 Peng W, Jia P, Fan Q, McCarty BJ, Tang W. ChemSusChem 2022; 15: e202102483
- 44a Ishihara M, Takagi Y, Li G, Noguchi M, Shoda S-I. Chem Lett 2013; 42: 1235-1237
- 44b Li G, Noguchi M, Ishihara M. et al. Carbohydr Res 2023; 534: 108940
- 44c Tanaka T, Kikuta N, Kimura Y, Shoda S-i. Chem Lett 2015; 44: 846-848
- 44d Tanaka T, Noguchi M, Kobayashi A, Shoda S-I. Chem Commun 2008; 2016-2018
- 45 Noguchi M, Tanaka T, Gyakushi H, Kobayashi A, Shoda S-I. J Org Chem 2009; 74: 2210-2212
- 46a Lim D, Brimble MA, Kowalczyk R, Watson AJA, Fairbanks AJ. Angew Chem Int Ed 2014; 53: 11907-11911
- 46b Alexander SR, Williams GM, Brimble MA, Fairbanks AJ. Org Biomol Chem 2018; 16: 1258-1262
- 47 Noguchi M, Fujieda T, Huang WC, Ishihara M, Kobayashi A, Shoda S-I. Helv Chim Acta 2012; 95: 1928-1936
- 48 Battigelli A, Kim JH, Dehigaspitiya DC. et al. ACS Nano 2018; 12: 2455-2465
- 49 Yu G, Vicini AC, Pieters RJ. J Org Chem 2019; 84: 2470-2488
- 50 Huang ML, Purcell SC, Verespy Iii S, Wang Y, Godula K. Biomater Sci 2017; 5: 1537-1540
- 51 Fairbanks AJ. Carbohydr Res 2021; 499: 108197 (1–18)
- 52a Tanaka T, Matsumoto T, Noguchi M, Kobayashi A, Shoda S-i. Chem Lett 2009; 38: 458-459
- 52b Tanaka T, Nagai H, Noguchi M, Kobayashi A i, Shoda S-I. Chem Commun 2009; 3378-3379
- 52c Yoshida N, Noguchi M, Tanaka T. et al. Chem – Asian J 2011; 6: 1876-1885
- 52d Li G, Noguchi M, Kashiwagura H, Tanaka Y, Serizawa K. Tetrahedron Lett 2016; 57: 3529-3531
- 52e Meguro Y, Noguchi M, Li G, Shoda S-I. Org Lett 2018; 20: 76-79
- 53a Qiu X, Fairbanks AJ. Org Lett 2020; 22: 2490-2493
- 53b Alexander SR, Lim D, Amso Z, Brimble MA, Fairbanks AJ. Org Biomol Chem 2017; 15: 2152-2156
- 53c Alexander SR, Fairbanks AJ. Org Biomol Chem 2016; 14: 6679-6682
- 53d Singh GP, Wilson FED, Reid NH, Fairbanks AJ. Carbohydr Res 2025; 551: 109411
- 54 Köhling S, Exner MP, Nojoumi S, Schiller J, Budisa N, Rademann J. Angew Chem Int Ed 2016; 55: 15510-15514
- 55 Qiu X, Garden AL, Fairbanks A. J Chem Sci 2022; 13: 4122-4130
- 56 Wang ZX, Maisonneuve S, Xie J. J Org Chem 2022; 87: 16165-16174
- 57 Pfander H, Läderach M. Carbohydr Res 1982; 99: 175-179
- 58 Plusquellec D, Roulleau F, Bertho F, Lefeuvre M, Brown E. Tetrahedron 1986; 42: 2457-2467
- 59 Qiu X, Chong D, Fairbanks AJ. Org Lett 2023; 25: 1989-1993
- 60 Grynkiewicz G. Pol J Chem 1979; 53: 1571-1579
- 61a Takeuchi H, Fujimori Y, Ueda Y. et al. Org Lett 2020; 22: 4754-4759
- 61b Takeuchi H, Mishiro K, Ueda Y, Fujimori Y, Furuta T, Kawabata T. Angew Chem Int Ed 2015; 54: 6177-6180
- 61c Shibayama H, Ueda Y, Tanaka T, Kawabata T. J Am Chem Soc 2021; 143: 1428-1434
- 62 Talukdar R, Chong D, Fairbanks AJ. Org Lett 2024; 26: 10536-10541
- 63 Ho CC, Wang H, Wang G, Chi YB. Org Lett 2025; 27 (2) 635-639
- 64 Lim D, Fairbanks A. J Chem Sci 2017; 8: 1896-1900
- 65 Zuo H, Zhang C, Zhang Y, Niu D. Angew Chem Int Ed 2023; 62: e202309887
- 66 El-Badri MH, Willenbring D, Tantillo DJ, Gervay-Hague J. J Org Chem 2007; 72: 4663-4672
- 67 Miyagawa A, Toyama S, Ohmura I, Miyazaki S, Kamiya T, Yamamura H. J Org Chem 2020; 85: 15645-15651
- 68 Kano K, Ishii N, Miyagawa A. et al. Org Biomol Chem 2023; 21: 2138-2142
- 69 Pçhner C, Ullmann V, Hilpert R, Samain E, Unverzagt C. Tetrahedron Lett 2014; 55: 2197-2200
- 70 Kolakowski RV, Shangguan N, Sauers RR, Williams LJ. J Am Chem Soc 2006; 128: 5695-5702
- 71 Dangerfield EM, Foster AJ, Lynch AT, Stocker BL, Timmer MSM. Org Lett 2025; 27: 1385-1389
- 72 Chao EC, Henry RR. Nat Rev Drug Discovery 2010; 9: 551-559
- 73 Koester DC, Holkenbrink A, Werz DB. Synthesis 2010; 2010: 3217-3242
- 74 Kitamura K, Ando Y, Matsumoto T, Suzuki K. Chem Rev 2018; 118: 1495-1598
- 75 Leclerc E, Pannecoucke X, Etheve-Quelquejeu M, Sollogoub M. Chem Soc Rev 2013; 42: 4270-4283
- 76 Voigt B, Scheffler U, Mahrwald R. Chem Commun 2012; 48: 5304-5306
- 77a Shang W, Su SN, Shi R. et al. Angew Chem Int Ed 2021; 60: 385-390
- 77b Zhang C, Xu SY, Zuo H, Zhang X, Dang Q-D, Niu D. Nat Synth 2023; 2: 251-260
- 77c Xu S, Zhang W, Li C. et al. Angew Chem, Int Ed 2023; 62: e202218303
- 78 Wang Q, Lee BC, Tan TJ, Jiang Y, Ser WH, Koh MJ. Nat Synth 2022; 1: 967-974
- 79 Miura T, Yoritate M, Hirai G. Chem Commun 2023; 59: 8564-8567
- 80 Zhang J, Liu Q, Chiang A, Nitz M. Org Lett 2024; 26: 8498-8502
- 81 Jiang Y, Wei Y, Zhou QY. et al. Nature 2024; 631: 319-327
- 82 Cao S, Zhang H, Chen M. et al. Angew Chem Int Ed 2024; 63: e202412436
- 83 Han Y, Wang X, Tao Q, Yang B, Zhu F. Angew Chem Int Ed 2025; e202504504
- 84 Chen A, Zhao S, Han Y. et al. Chem Sci 2023; 14: 7569-7580
- 85 Xie H, Wang S, Shu X-Z. J Am Chem Soc 2024; 146: 32269-32275