Subscribe to RSS
DOI: 10.1055/a-2643-6539
Nickel-Catalyzed Enantioconvergent C(sp3)–C(sp3) Cross-Coupling between α-Iodogermanes and Alkylzinc Reagents
Supported by: Einstein Stiftung Berlin None
Supported by: Deutsche Forschungsgemeinschaft Oe 249/25-1
Funding Information This research was supported by the Deutsche Forschungsgemeinschaft (Oe 249/25-1).

Dedication
Dedicated to Professor Paul Knochel on the occasion of his 70th birthday.
Abstract
We report a nickel-catalyzed enantioconvergent C(sp3)–C(sp3) cross-coupling between α-iodogermanes and alkylzinc reagents to access α-chiral alkylgermanes. This transformation, a strategy previously established for silicon-based electrophiles, extends to germanium, enabling the enantioselective formation of α-chiral germanes from simple, unactivated alkyl chains. While yields and enantioselectivities remain moderate, the reaction outcome was finely tuned through the design and evaluation of a library of over 30 ligands, including more than a dozen novel scaffolds. Notably, two distinct NiBr₂∙PyBox complexes allowed for access to products of opposite absolute configuration, and preformed nickel complexes were required to reach synthetically useful conversions. These findings highlight the challenges of asymmetric catalysis with heavier main-group elements and provide a platform for the future design of ligands tailored to organogermanium chemistry.
Keywords
Asymmetric catalysis - C(sp3)–C(sp3) cross-coupling - Enantioconvergence - Germanium - NickelPublication History
Received: 15 June 2025
Accepted after revision: 25 June 2025
Accepted Manuscript online:
25 June 2025
Article published online:
18 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Rogova T, Ahrweiler E, Schoetz MD, Schoenebeck F. Angew Chem Int Ed 2024; 63: e202314709
- 1b Fricke C, Schoenebeck F. Acc Chem Res 2020; 53: 2715-2725
- 1c Fricke C, Sherborne GJ, Funes-Ardoiz I, Senol E, Guven S, Schoenebeck F. Angew Chem Int Ed 2019; 58: 17788-17795
- 1d Fricke C, Deckers K, Schoenebeck F. Angew Chem Int Ed 2020; 59: 18717-18722
- 1e Dahiya A. Schoenebeck. Org Lett 2022; 24: 2728-2732
- 1f Dahiya A, Schoenebeck F. ACS Catal 2022; 12: 8048-8054
- 1g Selmani A, Schoenebeck F. Synthesis 2023; 55: 1792-1798
- 1h Ahrweiler E, Schoetz MD, Singh G, Bindschaedler QP, Sorroche A, Schoenebeck F. Angew Chem Int Ed 2024; 63: e202401545
- 1i Schoetz MD, Deckers K, Singh G, Ahrweiler E, Hoeppner A, Schoenebeck F. J Am Chem Soc 2024; 146: 21257-21263
- 2a Su P-F, Wang K, Peng X, Pang X, Guo P, Shu X-Z. Angew Chem 2021; 133: 26775-26780
- 2b Guo P, Pang X, Wang K. et al. Org Lett 2022; 24: 1802-1806
- 2c You M-X, Su P-F, She Z-H, Shu X-Z. Sci China Chem 2023; 66: 3562-3566
- 2d Han G-Y, Su P-F, Pan Q-Q, Liu X-Y, Shu X-Z. Nat Catal 2024; 7: 12-20
- 3a Xu M-Y, Xiao B. Chem Commun 2021; 57: 11764-11775
- 3b Song H-J, Jiang W-T, Zhou Q-L, Xu M-Y, Xiao B. ACS Catal 2018; 8: 9287-9291
- 3c Xu M-Y, Jiang W-T, Li Y. et al. J Am Chem Soc 2019; 141: 7582-7588
- 3d Xu M-Y, Jiang W-T, Li Y. et al. J Am Chem Soc 2019; 141: 7582-7588
- 3e Jiang W-T, Xu M-Y, Yang S, Xie X-Y, Xiao B. Angew Chem Int Ed 2020; 59: 20450-20454
- 3f Wang C, Liu Y-C, Xu M-Y, Xiao B. Org Lett 2021; 23: 4593-4597
- 3g Xu Q-H, Wei L-P, Xiao B. Angew Chem Int Ed 2022; 61: e202115592
- 3h Li W-F, Xu Q-H, Miao Q-Y, Xiao B. J Org Chem 2024; 89: 16269-16281
- 3i Xu M-Y, Jiang W-T, Xia M-Z, An Z-L, Xie X-Y, Xiao B. Angew Chem Int Ed 2024; 63: e202317284
- 4a Debrauwer V, Turlik A, Rummler L. et al. J Am Chem Soc 2020; 142: 11153-11164
- 4b Lin W, You L, Yuan W, He C. ACS Catal 2022; 12: 14592-14600
- 4c Sahoo MK, Kim D, Chang S, Park J-W. ACS Catal 2021; 11: 12777-12784
- 4d Deb A, Singh S, Seth K. et al. ACS Catal 2017; 7: 8171-8175
- 4e Gu R, Feng X, Bao M, Zhang X. Nat Commun 2023; 14: 7669
- 4f Luo Y, Xu B, Lv L, Li Z. Org Lett 2022; 24: 2425-2430
- 4g Luo Y, Lv L, Li Z. Org Lett 2022; 24: 8052-8056
- 4h Luo Y, Lv L, Li Z. ChemCatChem 2023; 15: e202300467
- 5a Tu J-L, Huang B. Adv Synth Catal 2024; 366: 4618-4633
- 5b Ke J, Chen CD, Ren L-Q, Zu B, Li B, He C. Org Chem Front 2024; 11: 6558-6572
- 6a Keess S, Oestreich M. Org Lett 2017; 19: 1898-1901
- 6b Xue W, Mao W, Zhang L, Oestreich M. Angew Chem Int Ed 2019; 58: 6440-6443
- 6c Brösamlen D, Oestreich M. Org Lett 2023; 25: 1901-1906
- 6d Brösamlen D, Oestreich M. Org Lett 2023; 25: 5319-5323
- 6e Brösamlen D, Oestreich M. Org Lett 2024; 26: 977-982
- 6f Brösamlen D, Neb D, Oestreich M. Angew Chem Int Ed 2024; 63: e202412181
- 7a Hofstra JL, Cherney AH, Ordner CM, Reisman SE. J Am Chem Soc 2018; 140: 139-142
- 7b Schwarzwalder GM, Matier CD, Fu GC. Angew Chem Int Ed 2019; 58: 3571-3574
- 7c Yi H, Mao W, Oestreich M. Angew Chem Int Ed 2019; 58: 3575-3578
- 8a Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science 2016; 354: 1265-1269
- 8b Wang Z, Bachman S, Dudnik AS, Fu GC. Angew Chem Int Ed 2018; 57: 14529-14532
- 9a He S-J, Wang J-W, Li Y. et al. J Am Chem Soc 2020; 142: 214-221
- 9b Wang H, Wu X, Xu T. Angew Chem Int Ed 2023; 62: e202218299
- 10a Kranidiotis-Hisatomi N, Oestreich M. Synthesis 2023; 55: 1497-1506
- 10b Yus M, Nájera C, Foubelo F, Sansano JM. Chem Rev 2023; 123: 11817-11893
- 10c Diccianni JB, Diao T. Trends Chem 2019; 1: 830-844
- 10d Choi J, Fu GC. Science 2017; 356: eaaf7230
- 10e Fu GC, Cent ACS. Science 2017; 3: 692-700
- 10f Bhat V, Welin ER, Guo X, Stoltz BM. Chem Rev 2017; 117: 4528-4561
- 10g Kaga A, Chiba S. ACS Catal 2017; 7: 4697-4706
- 10h Cherney AH, Kadunce NT, Reisman SE. Chem Rev 2015; 115: 9587-9652
- 10i Hu X. Chem Sci 1867; 2011: 2
- 11a Kranidiotis-Hisatomi N, Yi H, Oestreich M. Angew Chem Int Ed 2021; 60: 13652-13655
- 11b Kranidiotis-Hisatomi N, Oestreich M. Org Lett 2022; 24: 4987-4991
- 12 Knippel JL, Ni AZ, Schuppe AW, Buchwald SL. Angew Chem Int Ed 2022; 61: e202212630
- 13 Han G-Y, Su P-F, Pan Q-Q, Liu X-Y, Shu X-Z. Nat Catal 2024; 7: 12-20
- 14a Lin W, Ren L-Q, Du CC. et al. CCS Chem 2024; 7: 1157-1167
- 14b Han A-C, Zhang X-G, Yang L-L. et al. Chem Catal 2024; 4: 100826
- 14c Han A-C, Xiao L-J, Zhou Q-L. J Am Chem Soc 2024; 146: 5643-5649
- 15 Yang Z-P, Freas DJ, Fu GC. J Am Chem Soc 2021; 143: 2930-2937
- 16a Desimoni G, Faita G, Guala M, Laurenti A, Mella MA. Chem – Eur J 2005; 11: 3816-3824
- 16b Desimoni G, Faita G, Piccinini F, Toscanini M. Eur J Org Chem 2006; 2006: 5228-5230
- 16c Desimoni G, Faita G, Mella M, Piccinini F, Toscanini M. Eur J Org Chem 2007; 1529-1534
- 16d Desimoni G, Faita G, Toscanini M, Boiocchi M. Chem – Eur J 2007; 13: 9478-9485
- 16e Desimoni G, Faita G, Toscanini M, Boiocchi M. Chem – Eur J 2008; 14: 3630-3636
- 16f Desimoni G, Faita G, Livieri A, Mella M, Ponta L, Boiocchi M. Eur J Org Chem 2012; 2916-2928
- 17 Liu M, Le N, Uyeda C. Angew Chem Int Ed 2023; 62: e202308913
- 18 Lide DR. CRC Handbook of Chemistry and Physics, Internet Version 2005. CRC Press; 2005
For a mini-review about the synthesis and use of organogermanes in synthesis:
For an account:
For a review about the applications of germatranes in Pd-catalyzed cross-couplings:
For selected examples, see:
For very recent reviews on the construction of C–Ge bonds:
For a review about enantioconvergent cross-coupling reactions of α-silyl and α-boryl reagents:
For work employing silyloxy-substituted PyBox ligands in different fields of catalysis, in particular L24: