Synthesis
DOI: 10.1055/a-2609-9601
paper

Fluorinative Difunctionalization of a Cyclooctene-Fused β-Lactam and Cyclooctene-Fused β-Amino Esters

Tamás T. Novák
a   Institute of Organic Chemistry, Stereochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
b   Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
,
Gábor Turczel
c   Centre for Structural Science, HUN-REN Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117 Budapest, Hungary
,
Gábor Hornyánszky
b   Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
,
Pál T. Szabó
c   Centre for Structural Science, HUN-REN Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117 Budapest, Hungary
,
Loránd Kiss
a   Institute of Organic Chemistry, Stereochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
,
Santos Fustero
d   Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, 46100-Burjassot, Valencia, Spain
,
Melinda Nonn
e   MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary
f   National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
› Author Affiliations

The authors gratefully acknowledge financial support from the Nemzeti Kutatási Fejlesztési és Innovációs Hivatal (NKFIH/OTKA) (National Research, Development and Innovation Office) of Hungary (FK 145394 and K 142266). We are also grateful for the support provided by the European Union (Project no. RRF-2.3.1-21-2022-00015). This work was supported by the János Bolyai Research Scholarship to M.N. from Magyar Tudományos Akadémia (Hungarian Academy of Sciences).


Preview

Abstract

The synthesis of novel arylfluorinated cyclic β-amino acid and β-lactam derivatives is accomplished. Studies on the Pd-catalyzed arylfluorination of the double bond of a cyclooctene-fused azetidine-2-one and various β-amino esters are performed under versatile experimental conditions. The arylfluorinative difunctionalization of a cyclooctene-fused β-lactam, performed with phenylboronic acid in the presence of Selectfluor, palladium diacetate, azacyclic ligands and different solvents, gave a separable mixture of fluorinated and non-fluorinated products. In contrast, arylfluorination of cyclooctane-β-amino esters, performed under similar conditions, proceed with full regio- and stereoselective control, leading to single phenyl-fluorinated products. Possible synthetic pathways for these transformations are also proposed.

Supporting Information



Publication History

Received: 11 April 2025

Accepted after revision: 14 May 2025

Accepted Manuscript online:
14 May 2025

Article published online:
11 June 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

    • 1a Hangmann WK. J. Med. Chem. 2008; 51: 4359
    • 1b O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1c Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D. J. Fluorine Chem. 2020; 239: 109639
    • 1d Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chem. Rev. 2021; 121: 4678
    • 1e Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals. Haufe G, Leroux FG. Academic Press; London: 2019: 1-90
    • 1f Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Gouverneur V, Müller K. Imperial College Press; London: 2012
    • 2a He J, Li Z, Dhawan G, Zhang W, Sorochinsky AE, Butler G, Soloshonok VA, Han J. Chin. Chem. Lett. 2023; 34: 107578
    • 2b Sheikhi N, Bahraminejad M, Saeedi M, Mirfazli SS. Eur. J. Med. Chem. 2023; 260: 115758
    • 2c Wang Y.-T, Yang P.-C, Zhang Y.-F, Sun J.-F. Eur. J. Med. Chem. 2024; 265: 116124
    • 2d Ali S, Zhou J. Eur. J. Med. Chem. 2023; 256: 115476
    • 2e Wang Q, Bian Y, Dhawan G, Zhang W, Sorochinsky AE, Makarem A, Soloshonok VA, Han J. Chin. Chem. Lett. 2024; 35: 109780
    • 3a Haufe G. Chem. Rec. 2023; e202300140
    • 3b Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Chem. Eur. J. 2020; 26: 11349
    • 3c Remete AM, Nonn M, Fustero S, Fülöp F, Kiss L. Tetrahedron 2018; 74: 6367
    • 3d Ni C, Hu J. Chem. Soc. Rev. 2016; 45: 5441
    • 3e Hirano K, Saito T, Fujihira Y, Sedgwick DM, Fustero S, Shibata N. J. Org. Chem. 2020; 85: 7976
    • 3f Caron S. Org. Process Res. Dev. 2020; 24: 470
    • 3g Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
    • 3h Huang M, Zhang C. Org. Lett. 2024; 26: 4158
    • 7a Kiss L, Fülöp F. Chem. Rev. 2014; 114: 1116
    • 7b Liu J, Han J, Izawa K, Sato T, White S, Meanwell NA, Soloshonok VA. Eur. J. Med. Chem. 2020; 208: 112736
    • 7c Wang S, Ying Z, Huang Y, Li Y, Hu M, Kang K, Wang H, Shao J, Wu G, Yu Y, Du Y, Chen W. Eur. J. Med. Chem. 2023; 250: 115185
    • 7d Watson RJ, Bamborough P, Barnett H, Chung C, Davis R, Gordon L, Grandi P, Petretich M, Phillipou A, Prinjha RK, Rioja I, Soden P, Werner T, Demont EH. J. Med. Chem. 2020; 63: 9045
    • 7e Granberg KH, Sakamaki S, Fuchigami R, Niwa Y, Fujio M, Kato H, Bergstrom F, Larsson N, Persson M, Villar IC, Fujita T, Sugikawa E, Althage M, Yano N, Yokoyama Y, Kimura J, Lal M, Mochida H. J. Med. Chem. 2024; 67: 4442
    • 7f Richard-Bildstein S, Aissaoui H, Pothier J, Schafer G, Gnerre C, Lindenberg E, Lehembre F, Pouzol L, Guerry P. J. Med. Chem. 2020; 63: 15864
    • 7g Cooper M, Llinas A, Hansen P, Caffrey M, Ray A, Sjodin S, Shamovsk I, Wada H, Jensen TJ, Sivars U, Hultin L, Andersson U, Lundqvist S, Gedda K, Jinton L, Krutrok N, Lewis R, Jansson P, Gardelli C. J. Med. Chem. 2020; 63: 9705
    • 7h Kiss L, Mándity IM, Fülöp F. Amino Acids 2017; 49: 1441
    • 7i Semghouli A, Nonn M, Remete AM, Fustero S, Kiss L. Chem. Rec. 2023; 23: e202300279
    • 8a Zhang DW, Zhao X, Hou JL, Li ZT. Chem. Rev. 2012; 112: 5271
    • 8b Morimoto J, Kim J, Kuroda D, Nagatoishi S, Tsumoto K, Sando S. J. Am. Chem. Soc. 2020; 142: 2277
    • 8c Mándity IM, Monsignori A, Fülöp L, Forró E, Fülöp F. Chem. Eur. J. 2014; 20: 4591
    • 8d Tan G, Das M, Keum H, Bellotti P, Daniliuc C, Glorius F. Nat. Chem. 2022; 14: 1174
    • 8e Ruffoni A, Ferri N, Bernini SK, Ricci C, Coesini A, Maffucci I, Clerici F, Contini A. J. Med. Chem. 2014; 57: 2953
    • 9a Zhou M, Feng Z, Zhang X. Chem. Commun. 2023; 59: 1434
    • 9b Bonetti A, Pellegrino S, Das P, Yuran S, Bucci R, Ferri N, Meneghetti F, Castellano C, Reches M, Gelmi ML. Org. Lett. 2015; 17: 4468
    • 9c Brittain WD. G, Lloyd CM, Cobb SL. J. Fluorine Chem. 2020; 239: 109630
    • 9d Leppkes J, Hohmann T, Koksch B. J. Fluorine Chem. 2020; 232: 109453
    • 9e Huhmann S, Koksch B. Eur. J. Org. Chem. 2018; 3667
  • 10 Pracht P, Bohle F, Grimme S. Phys. Chem. Chem. Phys. 2020; 22: 7169
  • 11 Neese F. WIREs Comput. Mol. Sci. 2012; 2: 73