Subscribe to RSS
DOI: 10.1055/a-2602-4547
Industrializable Synthesis of Fmoc-Ala-Thr-OH Pseudodipeptide as a Key Intermediate of Peptide Drugs
We are grateful for financial support from the Education Department of Sichuan (GZJG2022-239), the Science and Technology Research Project of the Sichuan Provincial Administration of Traditional Chinese Medicine (2023MS334), Science and Technology Bureau of LeShan Town (24YYJC0016, 24YYJC0019), and Leshan Vocational and Technical College.

Abstract
A new process for industrially synthesizing Fmoc-Ala-Thr-OH pseudodipeptide, which is a key intermediate for the synthesis of peptide drugs, is presented in four steps in overall 46% yield from Fmoc-L-Ala-OH. The process did not use column chromatography, and the characteristic of dipeptide salting with some organic base was cleverly utilized for purification. The suitable organic base for forming salt with the dipeptide was found after screening, and finally the synthesis was completed by recrystallization. The whole synthesis process is beneficial to industrial production and cost control. The purity of the product was over 99%.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2602-4547.
- Supporting Information
Publication History
Received: 23 February 2025
Accepted after revision: 07 May 2025
Accepted Manuscript online:
07 May 2025
Article published online:
11 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1
Jastreboff AM,
Aronne LJ,
Ahmad NN,
Wharton S,
Connery L,
Alves B,
Kiyosue A,
Zhang S,
Liu B,
Bunck MC.
N. Engl. J. Med. 2022; 387: 205
MissingFormLabel
- 2
Yule LR,
Bower RL,
Kaur H,
Kowalczyk R,
Haya DL,
Brimble MA.
Org. Biomol. Chem. 2016; 14: 5238
MissingFormLabel
- 3a
Nowick JS.
Acc. Chem. Res. 2008; 41: 1319
MissingFormLabel
- 3b
Nowick JS,
Chung DM,
Maitra K,
Maitra S,
Stigers KD,
Sun Y.
J. Am. Chem. Soc. 2000; 122: 7654
MissingFormLabel
- 3c
Auer S,
Kashchiev D.
Phys. Rev. Lett. 2008; 101: 168105
MissingFormLabel
- 3d
Gunasekaran K,
Ramakrishnan C,
Balaram P.
Protein Engng. 1997; 10: 1131
MissingFormLabel
- 4a
Kozminski P,
Gniazdowska E,
Fuks L,
Oszczak A.
J. Radioanal Nucl. Chem. 2012; 292: 67
MissingFormLabel
- 4b
Anderson GW,
Zimmerman J,
Callah FM.
J. Am. Chem. Soc. 1964; 86: 1839
MissingFormLabel
- 5a
Sosnovsky G,
Baysals M,
Erciyas E.
J. Pharm. Sci. 1994; 83: 999
MissingFormLabel
- 5b
Widdison WC,
Ponte JF,
Coccia JA,
Lanieri L,
Setiady Y,
Dong L,
Skaletskaya A,
Hong EE,
Wu R,
Qiu Q.-F,
Singh R,
Salomon P,
Fishkin N,
Harris L,
Maloney EK,
Kovtun Y,
Veale K,
Wilhelm SD,
Audette CA,
Costoplus JA,
Chari RV. J.
Bioconjug Chem. 2015; 26: 2261
MissingFormLabel
- 6a
Abedini A,
Raleigh DP.
Org. Lett. 2005; 7: 693
MissingFormLabel
- 6b
Joseph R,
Padilla MM,
Garner P.
Tetrahedron Lett. 2015; 56: 4302
MissingFormLabel
- 6c
Wohr T,
Wahl F,
Nefzi A,
Rohwedder B,
Sato T,
Sun XC,
Mutter M.
J. Am. Chem. Soc. 1996; 118: 9218
MissingFormLabel
- 7
Schöwe MJ,
Keiper O,
Unverzagt C,
Wittmann V.
Chem. Eur. J. 2019; 25: 15759
MissingFormLabel
- 8
Jackson RF. W,
Moore RJ,
Dexter CS.
J. Org. Chem. 1998; 63: 7875
MissingFormLabel
- 9
Haug BE,
Rich DH.
Org. Lett. 2004; 6: 4783
MissingFormLabel
- 10a
Staros JV,
Wright RW,
Swingle DM.
Anal. Biochem. 1986; 156: 220
MissingFormLabel
- 10b
Grabarek Z,
Gergely J.
Anal. Biochem. 1990; 185: 131
MissingFormLabel