Subscribe to RSS
DOI: 10.1055/a-2600-4572
Iron-Catalyzed P(O)–S Bond Formation through Cross-Dehydrogenative Coupling of Thiols with P(O)H Compounds
This work was financially supported by the National Science Foundation of China (22301164, 22425108, and 82404420), the Natural Science Foundation of Shandong Province (ZR2022QB007, ZR2024MB056, and ZR2023QH409), the Taishan Scholar Project of Shandong Province, and Shenzhen Special Funds (JCYJ20220530141205011).

Abstract
We herein report an iron(salan)-catalyzed cross-dehydrogenative coupling of thiols with P(O)H compounds for the efficient synthesis of a range of thiophosphates, thiophosphinates, and thiophosphinites. This mild and practical method employs environmentally benign air as terminal oxidant, and earth-abundant metal iron at a low loading as catalyst, and exhibits broad substrate scope and good functional group tolerance, which is applicable to bioactive molecule preparation.
Key words
iron catalysis - P(O)–S bond formation - cross-dehydrogenative coupling - thiophosphates - synthetic methodsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2600-4572.
- Supporting Information
Publication History
Received: 27 March 2025
Accepted after revision: 05 May 2025
Accepted Manuscript online:
05 May 2025
Article published online:
11 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Quin LD. A Guide to Organophosphorus Chemistry . Wiley Interscience; New York: 2000
- 1b Murphy PJ. Organophosphorus Reagents . Oxford University Press; Oxford: 2004
- 1c Crooke ST, Bennett CF. Annu. Rev. Pharmacol. Toxicol. 1996; 36: 29
- 1d Kumar TS, Yang T, Mishra S, Cronin C, Chakraborty S, Shen J.-B, Liang BT, Jacobson KA. J. Med. Chem. 2013; 56: 902
- 1e Cogoi S, Rapozzi V, Quadrifoglio F, Xodo L. Biochemistry 2001; 40: 1135
- 1f Xie R.-L, Zhao Q.-F, Zhang T, Fang J, Mei X.-D, Ning J, Tang Y. Bioorg. Med. Chem. 2013; 21: 278
- 1g Bennett M, Macdonald K, Chan S.-W, Luzio JP, Simari R, Weissberg P. Science 1998; 282: 290
- 2a Liu X, Zhou L, Yang R, Song X.-R, Xiao Q. Adv. Synth. Catal. 2023; 365: 2280
- 2b Liu C, Wang L, Zhang X. Chin. J. Org. Chem. 2021; 41: 2964
- 2c Jones DJ, O’Leary EM, O’Sullivan TP. Adv. Synth. Catal. 2020; 362: 2801
- 2d Li S, Fang L, Dou Q, Wang T, Cheng B. Tetrahedron 2023; 136: 133344
- 3a Renard P.-Y, Schwebel H, Vayron P, Josien L, Valleix A, Mioskowski C. Chem. Eur. J. 2002; 8: 2910
- 3b Ouyang Y.-J, Li Y.-Y, Li N.-B, Xu X.-H. Chin. Chem. Lett. 2013; 24: 1103
- 3c Kaboudin B. Tetrahedron Lett. 2002; 43: 8713
- 3d Xu Q, Liang C.-G, Huang X. Synth. Commun. 2003; 33: 2777
- 3e Pang R, Yao R, Lu S, Zhou Y, Chen W. Chin. Chem. Lett. 2021; 32: 453
- 4a Arisawa M, Ono T, Yamaguchi M. Tetrahedron Lett. 2005; 46: 5669
- 4b Carta P, Puljic N, Robert C, Dhimane A.-L, Fensterbank L, Lacôte E, Malacria M. Org. Lett. 2007; 9: 1061
- 4c Carta P, Puljic N, Robert C, Dhimane A.-L, Ollivier C, Fensterbank L, Lacôte E, Malacria M. Tetrahedron 2008; 64: 11865
- 4d Qiu Y, Worch JC, Chirdon DN, Kaur A, Maurer AB, Amsterdam S, Collins CR, Pintauer T, Yaron D, Bernhard S, Noonan KJ. T. Chem. Eur. J. 2014; 20: 7746
- 4e Rather SA, Bhat MY, Hussain F, Ahmed QN. J. Org. Chem. 2021; 86: 13644
- 5a Bai J, Cui X, Wang H, Wu Y. Chem. Commun. 2014; 50: 8860
- 5b Zhang X, Wang D, An D, Han B, Song X, Li L, Zhang G, Wang L. J. Org. Chem. 2018; 83: 1532
- 5c Kumaraswamy G, Raju R. Adv. Synth. Catal. 2014; 356: 2591
- 6 Wen C, Chen Q, Huang Y, Wang X, Yan X, Zeng J, Huo Y, Zhang K. RSC Adv. 2017; 7: 45416
- 7a Li S, Chen T, Saga Y, Han L.-B. RSC Adv. 2015; 5: 71544
- 7b He W, Hou X, Li X, Song L, Yu Q, Wang Z. Tetrahedron 2017; 73: 3133
- 8a Wang J, Huang X, Ni Z, Wang S, Wu J, Pan Y. Green Chem. 2015; 17: 314
- 8b Wang J, Huang X, Ni Z, Wang S, Pan Y, Wu J. Tetrahedron 2015; 71: 7853
- 8c Sun J.-G, Weng W.-Z, Li P, Zhang B. Green Chem. 2017; 19: 1128
- 9a Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N. Angew. Chem. Int. Ed. 2017; 56: 2487
- 9b Xue J.-W, Zeng M, Zhang S, Chen Z, Yin G. J. Org. Chem. 2019; 84: 4179
- 9c Zhu Y, Chen T, Li S, Shimada S, Han L.-B. J. Am. Chem. Soc. 2016; 138: 5825
- 9d Kaboudin B, Abedi Y, Kato J, Yokomatsu T. Synthesis 2013; 45: 2323
- 9e Huang H, Ash J, Kang JY. Org. Biomol. Chem. 2018; 16: 4236
- 9f Zhang H, Zhan Z, Lin Y, Shi Y, Li G, Wang Q, Deng Y, Hai L, Wu Y. Org. Chem. Front. 2018; 5: 1416
- 10a Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
- 10b Wei D, Darcel C. Chem. Rev. 2019; 119: 2550
- 10c Li Y.-Y, Yu S.-L, Shen W.-Y, Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
- 10d Enthaler S, Junge K, Beller M. Angew. Chem. Int. Ed. 2008; 47: 3317
- 10e Dou Q, Wang T, Fang L, Zhai H, Cheng B. Chin. J. Org. Chem. 2023; 43: 1386
- 11a Legros J, Figadère B. Nat. Prod. Rep. 2015; 32: 1541
- 11b Piontek A, Bisz E, Szostak M. Angew. Chem. Int. Ed. 2018; 57: 11116
- 11c Zhang Q, Zhu S.-F. Iron-Catalyzed Carbon–Carbon Coupling Reaction. In C–C Cross Couplings with 3d Base Metal Catalysts, Topics in Organometallic Chemistry, Vol. 71. Wu X.-F. Springer; Cham: 2023. 53
- 11d Li J, Liu K, Duan X, Liu J. Chin. J. Org. Chem. 2017; 37: 314
- 12a Correa A, Mancheno OG, Bolm C. Chem. Soc. Rev. 2008; 37: 1108
- 12b Oloo WN, Que L. Acc. Chem. Res. 2015; 48: 2612
- 12c Mao J, Xie G, Zhan J, Hua Q, Shi D. Adv. Synth. Catal. 2009; 351: 1268
- 12d Semenya J, Yang Y, Picazo E. J. Am. Chem. Soc. 2024; 146: 4903
- 12e Zhu Y, Chen S, Zhou Z, He Y, Liu Z, Liu Y, Feng Z. Chin. Chem. Lett. 2024; 35: 108303
- 12f Wang T, Zhou W, Yin H, Ma J.-A, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 10823
- 13a Cozzi PG. Chem. Soc. Rev. 2004; 33: 410
- 13b Clarke R, Herasymchuk K, Storr T. Coord. Chem. Rev. 2017; 352: 67
- 13c
Katsuki T.
Synlett 2003; 281
- 13d Matsumoto K, Egami H, Oguma T, Katsuki T. Chem. Commun. 2012; 48: 5823
- 14 Cooke BK, Herrington PJ, Jones KG, Morgan NG. Pestic. Sci. 1975; 6: 571
- 15a Chen Y, Yao J, Wang W.-X, Gao T.-C, Yang X, Zhang A.-F. Eur. J. Plant Pathol. 2013; 135: 675
- 15b Amin U, Akhtar N. J. Anim. Plant Sci. 2017; 27: 550
- 16a Uesugi Y, Tomizawa C. Agric. Biol. Chem. 1972; 36: 313
- 16b Shabana R. Phosphorus Sulfur Relat. Elem. 1987; 29: 293
- 17a Chiavarino B, Cipollini R, Crestoni ME, Fornarini S, Lanucara F, Lapi A. J. Am. Chem. Soc. 2008; 130: 3208
- 17b Ferroud C, Rool P, Santamaria J. Tetrahedron Lett. 1998; 39: 9423
- 18a Taniguchi N. Tetrahedron 2022; 110: 132689
- 18b Shi J, Gao X.-W, Tong Q.-X, Zhong J.-J. J. Org. Chem. 2021; 86: 12922
- 19a Jasniewski J, Que L. Chem. Rev. 2018; 118: 2554
- 19b Dolphin D, Traylor TG, Xie LY. Acc. Chem. Res. 1997; 30: 251
- 19c Golchoubian H, Hosseinpoor F. Catal. Commun. 2007; 8: 697
- 19d Lu R, Cao L, Guan H, Liu L. J. Am. Chem. Soc. 2019; 141: 6318
- 19e Guan H, Tung C.-H, Liu L. J. Am. Chem. Soc. 2022; 144: 5976
- 20 Sharghi H, Aboonajmi J, Aberi M. J. Org. Chem. 2020; 85: 6567
- 21 Hood TM, Lau S, Diefenbach M, Firmstone L, Mahon M, Krewald V, Webster RL. ACS Catal. 2023; 13: 11841
- 22 Safaei E, Naghdi N, Jagličić Z, Pevec A, Lee YI. Polyhedron 2017; 122: 116