Subscribe to RSS
DOI: 10.1055/a-2597-0098
Radical NHC Organocatalysis: Enabling Ultra-Remote, Site-Selective Functionalization of Arene C–H Bonds
Financial support from NSFC (22271028 and 22301023), the Science & Technology Department of Sichuan Province (2023NSFSC2001 and 2023NSFSC1081), the Research and Development in Key Areas of Guangdong Province (2022B1111050003), and the Longquan Talents Program is gratefully acknowledged.

Abstract
Achieving selective functionalization of distal C–H bonds, particularly remote aromatic C(sp 2)–H bonds, is a formidable challenge in organic synthesis. Recently, we have developed an innovative para-selective acylation strategy that targets ultra-remote aryl C(sp 2)–H bonds located eight bonds away from an activation site, utilizing radical N-heterocyclic carbene (NHC) organocatalysis. This method is based on a novel single-electron pathway, enabling site-selective activation of aryl C–H bonds through generated nitrogen-centered radicals in situ. This approach shows immense potential for the functionalization of pharmaceuticals, amino acids, and peptides, underscoring its importance in medicinal chemistry.
1 Introduction
2 Our Strategy of Ultra-Remote Activation via NHC Organocatalysis
3 Features and Applications of the NHC-Catalytic Ultra-Remote Acylation
4 Conclusion and Perspectives
Key words
ultra-remote activation - para-selective acylation - N-heterocyclic carbene - organocatalysis - late-stage functionalizationPublication History
Received: 07 April 2025
Accepted after revision: 29 April 2025
Accepted Manuscript online:
29 April 2025
Article published online:
17 July 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
- 1b Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primer 2021; 1: 43
- 1c Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Chem. Soc. Rev. 2023; 52: 2391
- 2a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 2b Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 3a Lucas EL, Lam NY. S, Zhuang Z, Chan HS. S, Strassfeld DA, Yu J.-Q. Acc. Chem. Res. 2022; 55: 537
- 3b Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Chem. Rev. 2022; 122: 5682
- 4a Leow D, Li G, Mei T.-S, Yu J.-Q. Nature 2012; 486: 518
- 4b Zhang Z, Tanaka K, Yu J.-Q. Nature 2017; 543: 538
- 4c Fan Z, Chen X, Tanaka K, Park HS, Lam NY. S, Wong JJ, Houk KN, Yu J.-Q. Nature 2022; 610: 87
- 4d Lam NY. S, Fan Z, Wu K, Park HS, Shim SY, Strassfeld DA, Yu J.-Q. J. Am. Chem. Soc. 2022; 144: 2793
- 4e Li J.-J, Zhao J.-H, Shen H.-C, Wu K, Kuang X, Wang P, Yu J.-Q. Chem 2023; 9: 1452
- 5a Leitch JA, Frost CG. Chem. Soc. Rev. 2017; 46: 7145
- 5b For selected examples, see: Hofmann N, Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
- 6 Davies HM. L, Manning JR. Nature 2008; 451: 417
- 7a Nechab M, Mondal S, Bertrand MP. Chem. Eur. J. 2014; 20: 16034
- 7b Guo W, Wang Q, Zhu J. Chem. Soc. Rev. 2021; 50: 7359
- 7c Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
- 7d Chu JC. K, Rovis T. Nature 2016; 539: 272
- 8 For selected recent reviews, see: Meng G, Lam NY. S, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 10571
- 9a Wan L, Dastbaravardeh N, Li G, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 18056
- 9b Tang R.-Y, Li G, Yu J.-Q. Nature 2014; 507: 215
- 9c Yang G, Lindovska P, Zhu D, Kim J, Wang P, Tang R.-Y, Movassaghi M, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 10807
- 9d Mihai MT, Genov GR, Phipps RJ. Chem. Soc. Rev. 2018; 47: 149
- 9e Li M, Shang M, Xu H, Wang X, Dai H.-X, Yu J.-Q. Org. Lett. 2019; 21: 540
- 9f Chang W, Chen Y, Lu S, Jiao H, Wang Y, Zheng T, Shi Z, Han Y, Lu Y, Wang Y, Pan Y, Yu J.-Q, Houk KN, Liu F, Liang Y. Chem 2022; 8: 1775
- 9g Ali W, Oliver GA, Werz DB, Maiti D. Chem. Soc. Rev. 2024; 53: 9904
- 9h Chauhan RS, Bairagi Y, Desai O, Kowalczyk R, Maiti D. Chem. Commun. 2025; 61: 4293
- 10 Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
- 11a Li W, Xu W, Xie J, Yu S, Zhu C. Chem. Soc. Rev. 2018; 47: 654
- 11b Allen AR, Noten EA, Stephenson CR. J. Chem. Rev. 2022; 122: 2695
- 12 Leifert D, Studer A. Angew. Chem. Int. Ed. 2020; 59: 74
- 13a Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
- 13b Song R, Chi YR. Angew. Chem. Int. Ed. 2019; 58: 8628
- 13c Dai L, Ye S. Chin. Chem. Lett. 2021; 32: 660
- 13d Li Q.-Z, Zeng R, Han B, Li J.-L. Chem. Eur. J. 2021; 27: 3238
- 13e Ishii T, Nagao K, Ohmiya H. Chem. Sci. 2020; 11: 5630
- 13f Liu K, Schwenzer M, Studer A. ACS Catal. 2022; 12: 11984
- 13g Bay AV, Scheidt KA. Trends Chem. 2022; 4: 277
- 13h Cai H, Yang X, Ren S.-C, Chi YR. ACS Catal. 2024; 14: 8270
- 13i Ye X.-Y, Xie Y, Chi YR. Trends Chem. 2024; 6: 506
- 14a Li J.-L, Liu Y.-Q, Zou W.-L, Zeng R, Zhang X, Liu Y, Han B, He Y, Leng H.-J, Li Q.-Z. Angew. Chem. Int. Ed. 2020; 59: 1863
- 14b Li Q.-Z, Zeng R, Fan Y, Liu Y.-Q, Qi T, Zhang X, Li J.-L. Angew. Chem. Int. Ed. 2022; 61: e202116629
- 14c Li Q.-Z, Liu Y.-Q, Kou X.-X, Zou W.-L, Qi T, Xiang P, Xing J.-D, Zhang X, Li J.-L. Angew. Chem. Int. Ed. 2022; 61: e202207824
- 14d Li Q.-Z, Zeng R, Xu P.-S, Jin X.-H, Xie C, Yang Q.-C, Zhang X, Li J.-L. Angew. Chem. Int. Ed. 2023; 62: e202309572
- 14e Liu W.-C, Zhang X, Chen L, Zeng R, Tian Y.-H, Ma E.-D, Wang Y.-P, Zhang B, Li J.-L. ACS Catal. 2024; 14: 3181
- 14f Huang H, Yu Z.-Y, Han L.-Y, Wu Y.-Q, Jiang L, Li Q.-Z, Huang W, Han B, Li J.-L. Sci. Adv. 2024; 10: eadn8401
- 14g Li Q.-Z, He M.-H, Zeng R, Lei Y.-Y, Yu Z.-Y, Jiang M, Zhang X, Li J.-L. J. Am. Chem. Soc. 2024; 146: 22829
- 14h Liu Y.-Q, Fu L.-L, Hong L.-H, Kou X.-X, Zhang X, Zeng R, Zhen Y.-Q, Han B, Li J.-L. Adv. Sci. 2025; 12: 2413851
- 15 Li Q.-Z, Zou W.-L, Yu Z.-Y, Kou X.-X, Liu Y.-Q, Zhang X, He Y, Li J.-L. Nat. Catal. 2024; 7: 900
- 16 Liu D, Tu T, Zhang T, Nie G, Liao T, Ren S.-C, Zhang X, Chi YR. Angew. Chem. Int. Ed. 2024; 63: e202407293
- 17 Zhang T, Wang L, Peng X, Liao T, Chen D, Tu T, Liu D, Cheng Z, Huang S, Ren S.-C, Zhang X, Chi YR. Sci. China: Chem. 2025; in press
- 18 Oya R, Sato H, Nagao K, Ohmiya H. Chem 2025; 102446
For selected reviews on C–H activation, see:
For selected reviews on proximal C–H activation, see:
For selected reviews on remote C–H activation, see:
For selected examples on transition-metal-mediated remote C–H metalation, see:
For selected reviews on σ-bond activation for remote C–H functionalization, see:
For selected reviews on HAT chemistry, see:
For selected examples on the remote C(sp 3)−H functionalization via HAT processes, see:
For selected reviews and examples on the application of U-shaped templates, see:
For selected reviews on NHC radical catalysis, see:
For our contributions on NHC catalysis, see: