RSS-Feed abonnieren
DOI: 10.1055/a-2596-9970
Zwitterionic Acridinium Amidate for Photocatalytic Acceptorless Dehydrogenation
This work was financially supported by MEXT KAKENHI Grants JP23H04901 and JP23H04907 (Green Catalysis Science); JSPS KAKENHI Grants 24K01481, 23H00296, and 22K21346; and JST FOREST Grant JPMJFR221L. The Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the IRTG 2678–Functional π-Systems (pi-Sys) (Münster-Nagoya International Research Training Group, GRK 2678-437785492) and grant GA 1594-6/2 are also gratefully acknowledged for generous financial support.

Abstract
The development of catalytic systems that facilitate simple yet valuable molecular transformations in a sustainable manner is of fundamental importance in the field of synthetic organic chemistry. Herein, we report the expedient application of a zwitterionic acridinium amidate, a recently developed direct hydrogen-atom-transfer catalyst, in catalytic acceptorless dehydrogenation (CAD). The combined use of the acridinium amidate with a cobaloxime complex and a protic additive as a catalyst system enables the CAD of hydrocarbons to proceed with high efficiency under mild reaction conditions.
Key word
acceptorless dehydrogenation - photocatalysis - zwitterions - hybrid catalysis - dehydrogenation - aromatizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2596-9970.
- Supporting Information
Publikationsverlauf
Eingereicht: 11. März 2025
Angenommen nach Revision: 29. April 2025
Accepted Manuscript online:
29. April 2025
Artikel online veröffentlicht:
10. Juni 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1
Dobereiner GE,
Crabtree RH.
Chem. Rev. 2010; 110: 681
MissingFormLabel
- 2
Armaroli N,
Balzani V.
ChemSusChem 2011; 4: 21
MissingFormLabel
- 3
Gunanathan C,
Milstein D.
Science 2013; 341: 1229712
MissingFormLabel
- 4
Verma PK.
Coord. Chem. Rev. 2022; 472: 214805
MissingFormLabel
- 5
Zhou M.-J,
Liu G,
Xu C,
Huang Z.
Synthesis 2022; 55: 547
MissingFormLabel
- 6
Capaldo L,
Ravelli D.
Eur. J. Org. Chem. 2017; 2017: 2056
MissingFormLabel
- 7
Capaldo L,
Ravelli D,
Fagnoni M.
Chem. Rev. 2022; 122: 1875
MissingFormLabel
- 8
Dam P,
Zuo K,
Azofra LM,
El-Sepelgy O.
Angew. Chem. Int. Ed. 2024; 63: e202405775
MissingFormLabel
- 9
West JG,
Huang D,
Sorensen EJ.
Nat. Commun. 2015; 6: 10093
MissingFormLabel
- 10
Zhou M.-J,
Zhang L,
Liu G,
Xu C,
Huang Z.
J. Am. Chem. Soc. 2021; 143: 16470
MissingFormLabel
- 11
Kato S,
Saga Y,
Kojima M,
Fuse H,
Matsunaga S,
Fukatsu A,
Kondo M,
Masaoka S,
Kanai M.
J. Am. Chem. Soc. 2017; 139: 2204
MissingFormLabel
- 12
Fuse H,
Kojima M,
Mitsunuma H,
Kanai M.
Org. Lett. 2018; 20: 2042
MissingFormLabel
- 13
Ritu Ritu,
Das S,
Tian Y.-M,
Karl T,
Jain N,
König B.
ACS Catal. 2022; 12: 10326
MissingFormLabel
- 14
Zuo K,
Zhu J,
Akhtar F,
Dam P,
Azofra LM,
El-Sepelgy O.
Org. Lett. 2025; 27: 30
MissingFormLabel
- 15
Yi P,
Wu Y,
Wang J,
Liu Q,
Xing Y,
Lu Y,
Ma C,
Duan L,
Zhao J,
Meng Q.
Org. Biomol. Chem. 2025; 23: 1574
MissingFormLabel
- 16
Yuan Y,
Zhang Y,
Menzel JP,
Santoro J,
Dolack M,
Wang H,
Batista V,
Wang D.
ACS Catal. 2024; 14: 17445
MissingFormLabel
- 17
Gu X,
Zhang Y.-A,
Zhang S,
Wang L,
Ye X,
Occhialini G,
Barbour J,
Pentelute BL,
Wendlandt AE.
Nature 2024; 634: 352
MissingFormLabel
- 18
Ritu Ritu,
Kolb D,
Jain N,
König B.
Adv. Synth. Catal. 2023; 365: 605
MissingFormLabel
- 19
Entgelmeier L.-M,
Mori S,
Sendo S,
Yamaguchi R,
Suzuki R,
Yanai T,
García Mancheño O,
Ohmatsu K,
Ooi T.
Angew. Chem. Int. Ed. 2024; 63: e202404890
MissingFormLabel
- 20
Stéphan E,
Zen R,
Authier L,
Jaouen G.
Steroids 1995; 60: 809
MissingFormLabel
- 21
Kürti L,
Czakó B,
Corey EJ.
Org. Lett. 2008; 10: 5247
MissingFormLabel
- 22
Yue T,
Li H.-P,
Ding K.
Tetrahedron Lett. 2016; 57: 4850
MissingFormLabel
- 23
Alsayari A,
Kopel L,
Ahmed MS,
Pay A,
Carlson T,
Halaweish FT.
Steroids 2017; 118: 32
MissingFormLabel
- 24
Acceptorless Dehydrogenation of 1,2,3,4-Tetrahydronaphthalene; Typical Procedure
A flame-dried Schlenk tube equipped with a stirrer bar was charged with acridinium
amidate 1 (1.6 mg, 0.003 mmol, 3 mol %), Co complex 2a (2.1 mg, 0.005 mmol, 5 mol %), and 2,4,6-collidinium tosylate (14.7 mg, 0.05 mmol).
The tube was sealed with a rubber septum, evacuated, and backfilled with Ar five times,
then DCE (500 μL) and 1,2,3,4-tetrahydronaphthalene (13.2 mg, 0.1 mmol, 1.0 equiv)
were successively introduced into the Schlenk tube. The rubber septum was replaced
with a glass stopper under a steady flow of Ar, and the tube was quickly evacuated
and backfilled with Ar five times. The mixture was then stirred for 48 h under irradiation
by two Kessil H150 Blue lamps, with fan cooling to maintain the temperature below
40 °C. The mixture was concentrated, and the yield of naphthalene was determined by
GC-FID with 1,3,5-trimethoxybenzene as an internal standard [yield: 0.080 mmol (80%)].
MissingFormLabel