Subscribe to RSS
DOI: 10.1055/a-2593-6525
Unorthodox Nanocatalysis through a Carbosphere-Nanofabricated Pt–Si Nanocomposite: Effective Tandem Imination Protocol Involving Oxidative C=C Cleavage
This work was supported by the project grant from the Ministry of Mines (Project No. Met4-14/19/2021), Government of India. P. K. M., A. S. M., and K. S. are thankful to the Council for Scientific and Industrial Research (CSIR), Human Resource Development Group (HRDG), Government of India and the University Grants Commission (UGC), Government of India for their fellowship as senior research fellow (S. R. F). S. A., S. S., and S. M. acknowledge financial assistance from the Government of West Bengal. S. D. is obliged to Government of India for his financial assistance.

Abstract
Considering the efficacy of platinum nanoparticles in various research areas, we report a new carbosphere-nanofabricated Pt–Si nanocomposite with a size of ca. 8 nm as measured using HRTEM and DLS. This nanocomposite was synthesized by an eco-friendly hydrothermal approach using an efficient and unprecedented in situ imination through oxidative C=C cleavage. Based on HRMS kinetic studies and control experiments, a plausible mechanistic approach was developed in which the olefin counterpart is converted into the corresponding aldehyde by exploiting Pt–Si mediated nanocatalysis. The major advantages of this work include the eco-friendly hydrothermal synthesis of the Pt–Si nanocomposite for the non-traditional imination from cinnamic acid or styrene derivatives with diverse amines through oxidative cleavage of the C=C bond. The method will find diverse applications in late-stage functionalizations.
Key words
Pt-Si nanocomposites - hydrothermal methods - oxidative cleavage of C=C bonds - direct imination - nanocatalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2593-6525.
- Supporting Information
Publication History
Received: 19 March 2025
Accepted after revision: 23 April 2025
Accepted Manuscript online:
23 April 2025
Article published online:
04 July 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Khan MA. R, Al Mamun MS, Habib MA, Islam AB. M. N, Mahiuddin M, Karim KM. R, Naime J, Saha P, Dey SK, Ara MH. Results Chem. 2022; 4: 100478
- 1b Jeyaraj M, Gurunathan S, Qasim M, Kang M.-H, Kim J.-H. Nanomaterials 2019; 9: 1719
- 2a Tetsuya K, Sho K, Tomohiro K, Shunya Y, Tetsuya Y, Takayuki T. APL Materials 2023; 11: 61115
- 2b Stephen AJ, Rees NV, Mikheenko I, Macaskie LE. Front. Energy Res. 2019; 7: 442658, DOI:
- 3 Jiménez-Morales I, Haidar F, Cavaliere S, Jones D, Rozière J. ACS Catal. 2020; 10: 10399
- 4a Ma L, Li L, Zhu G. Inorg. Chem. Front. 2022; 9: 2424
- 4b Abed A, Derakhshan M, Karimi M, Shirazinia M, Mahjoubin-Tehran M, Homayonfal M, Hamblin MR, Mirzaei SA, Soleimanpour H, Dehghani S, Dehkordi FF, Mirzaei H. Front. Pharmacol. 2022; 13: 797804
- 5a Cao S, Tao F, Tang Y, Li Y, Yu J. Chem. Soc. Rev. 2016; 45: 4747
- 5b Somorjai GA, Park JY. Angew. Chem. Int. Ed. 2008; 47: 9212
- 6 Matin MA, Jang J.-H, Kwon Y.-U. Int. J. Hydrogen Energy 2014; 39: 3710
- 7 Xiao J, Liu S, Tian N, Zhou Z.-Y, Liu H.-X, Xu B.-B, Sun S.-G. J. Am. Chem. Soc. 2013; 135: 18754
- 8 Liang H.-P, Zhang H.-M, Hu J.-S, Guo Y.-G, Wan L.-J, Bai C.-L. Angew. Chem. Int. Ed. 2004; 43: 1540
- 9 Zhou X.-W, Zhang R.-H, Zhou Z.-Y, Sun S.-G. J. Power Sources 2011; 196: 5844
- 10 Geboes B, Mintsouli I, Wouters B, Georgieva J, Kakaroglou A, Sotiropoulos S, Valova E, Armyanov S, Hubin A, Breugelmans T. Appl. Catal., B 2014; 150–151: 249
- 11 Kim SM, Liu L, Cho SH, Jang HY, Park S. J. Mater. Chem. A 2013; 1: 15252
- 12 Lee SH, Kakati N, Jee SH, Maiti J, Yoon Y.-S. Mater. Lett. 2011; 65: 3281
- 13a Zhu S, Lei J, Yang S, Zhao Z, Liu N, Li S.-W. Org. Lett. 2025; in press
- 13b Mou Z.-D, Zhang X, Niu D. Green Synth. Catal. 2021; 2: 70
- 13c Das TK, Ghosh A, Balanna K, Behera P, Gonnade RG, Marelli UK, Das AK, Biju AT. ACS Catal. 2019; 9: 4065
- 13d Laha JK, Tummalapalli KS. S, Jethava KP. Org. Biomol. Chem. 2016; 14: 2473
- 13e Tang Y, Fettinger JC, Shaw JT. Org. Lett. 2009; 11: 3802
- 14a Kondratyev NS, Malkov AV. Beilstein J. Org. Chem. 2024; 20: 2349
- 14b He J, Seo CB, Yoon WS, Yun J. Org. Lett. 2023; 25: 5492
- 14c Han X.-L, Hu B, Fei C, Li Z, Yu Y, Cheng C, Foxman B, Luo J, Deng L. J. Am. Chem. Soc. 2023; 145: 4400
- 14d Egorov IN, Santra S, Zyryanov GV, Majee A, Hajra A, Chupakhin ON. Adv. Synth. Catal. 2022; 364: 2092
- 14e Tang P, Wang H, Zhang W, Chen F.-E. Green Synth. Catal. 2020; 1: 26
- 15a Islam MdT, Bitu NA, Chaki BM, Hossain MdJ, Asraf MdA, Hossen MdF, Kudrat-E-Zahan Md, Latif MdA. RSC Adv. 2024; 14: 25256
- 15b Nagar S, Raizada S, Tripathee N. Results Chem. 2023; 6: 101153
- 15c El-ghamry MA, Elzawawi FM, Aziz AA. A, Nassir KM, Abu-El-Wafa SM. Sci. Rep. 2022; 12: 17942
- 15d Raczuk E, Dmochowska B, Samaszko-Fiertek J, Madaj J. Molecules 2022; 27: 787
- 15e Verhoeven DG. A, Negenman HA, Orsino AF, Lutz M, Moret M.-E. Inorg. Chem. 2018; 57: 10846
- 16a Mahato J, Bera PS, Saha TK. Org. Biomol. Chem. 2024; 22: 4528
- 16b Li J, Hu R, Liu W, Gao D, Zhao H, Li C, Jiang X, Chen G. Inorg. Chem. 2023; 62: 3692
- 16c Himmelbauer D, Talmazan R, Weber S, Pecak J, Thun-Hohenstein A, Geissler M.-S, Pachmann L, Pignitter M, Podewitz M, Kirchner K. Chem. Eur. J. 2023; 19: e202300094
- 16d Paudel K, Xu S, Hietsoi O, Pandey B, Onuh C, Ding K. Organometallics 2021; 40: 418
- 16e Tamura M, Tomishige K. J. Catal. 2020; 389: 285
- 16f Han L, Xing P, Jiang B. Org. Lett. 2014; 16: 3428
- 16g Yadav DK. T, Bhanage BM. Synlett 2014; 25: 1611
- 16h Gnanaprakasam B, Zhang J, Milstein D. Angew. Chem. Int. Ed. 2010; 49: 1468
- 17a Pan B, Wei L, Zhang Z, Zheng G, Wang P, Liu C, Gao L, Sun X. Appl. Catal. O: Open 2025; 203: 207042
- 17b Wu C, Bu J, Wang W, Shen H, Cao Y, Zhang H. Ind. Eng. Chem. Res. 2022; 61: 5442
- 17c Yamamoto Y, Ota M, Kodama S, Ueshima M, Nomoto A, Ogawa A, Furuya M, Kawakami K. ACS Omega 2021; 6: 34339
- 17d Dong C.-P, Higashiura Y, Marui K, Kumazawa S, Nomoto A, Ueshima M, Ogawa A. ACS Omega 2016; 1: 799
- 17e Kumar R, Gleißner EH, Tiu EG. V, Yamakoshi Y. Org. Lett. 2016; 18: 184
- 17f Goriya Y, Kim HY, Oh K. Org. Lett. 2016; 18: 5174
- 17g Zhang E, Tian H, Xu S, Yu X, Xu Q. Org. Lett. 2013; 15: 2704
- 18a Kallitsakis MG, Tancini PD, Dixit M, Mpourmpakis G, Lykakis IN. J. Org. Chem. 2018; 83: 1176
- 18b Reddy ChV, Kingston JV, Verkade JG. J. Org. Chem. 2008; 73: 3047
- 18c Kondo T, Okada T, Mitsudo T.-A. J. Am. Chem. Soc. 2002; 124: 186
- 19a Huang H, Qiu Z, Han T, Kwok RT. K, Lam JW. Y, Tang BZ. ACS Macro Lett. 2017; 6: 1352
- 19b Mir R, Dudding T. J. Org. Chem. 2016; 81: 2675
- 19c Kramer S, Dooleweerdt K, Lindhardt AT, Rottländer M, Skrydstrup T. Org. Lett. 2009; 11: 4208
- 19d Tillack A, Castro IG, Hartung CG, Beller M. Angew. Chem. Int. Ed. 2002; 41: 2541
- 19e Hartung CG, Tillack A, Trauthwein H, Beller M. J. Org. Chem. 2001; 66: 6339
- 20 Kehner RA, Zhang G, Bayeh-Romero L. J. Am. Chem. Soc. 2023; 145: 4921
- 21a Yamanaka N, Hara T, Ichikuni N, Shimazu S. Mol. Catal. 2021; 505: 111503
- 21b Li M, Cárdenas-Lizana F, Keane MA. Appl. Catal., A 2018; 557: 145
- 21c Li M, Hao Y, Cárdenas-Lizana F, Keane MA. Appl. Catal., A 2017; 531: 52
- 21d Higashimoto S, Nakai Y, Azuma M, Takahashi M, Sakata Y. RSC Adv. 2014; 4: 37662
- 21e Rios-Bernÿ O, Flores SO, Córdova I, Valenzuela MA. Tetrahedron Lett. 2010; 51 2730
- 21f Korich AL, Hughes TS. Synlett 2007; 2602
- 22 Payette JN, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 12276
- 23a Chen L, Zhang L, Shao Y, Xu G, Zhang X, Tang S, Sun J. Org. Lett. 2019; 21: 4124
- 23b Tindall DJ, Werlé C, Goddard R, Philipps P, Farès C, Fürstner A. J. Am. Chem. Soc. 2018; 140: 1884
- 24a Ch V, Sandupatla R, Lingareddy E, Raju D. Mater. Lett. 2021; 302: 130417
- 24b Wu S, Sun W, Chen J, Zhao J, Cao Q, Fang W, Zhao Q. J. Catal. 2019; 377: 110
- 24c Ali E, Naimi-Jamal MR, Dekamin MG. Sci. Iran. 2013; 20: 592
- 25a Song T, Park JE, Chung YK. J. Org. Chem. 2018; 83: 4197
- 25b Zhao C, Gao R, Ma W, Li M, Li Y, Zhang Q, Guan W, Fu J. Nat. Commun. 2024; 15: 4329
- 25c Mielby J, Poreddy R, Engelbrekt C, Kegnæs S. Chin. J. Catal. 2014; 35: 670
- 25d Chen L, Liu Z, Kong D, Tang Q, Tan L.-L, Liang Z.-M, Chen Y, Chen C.-X, Ma S. ACS Catal. 2025; 15: 4858
- 25e Azizi K, Madsen R. ChemCatChem 2018; 10: 3703
- 25f Kumar MA, Kamali M, Putla SB, Subha P, Sudarsanam P. ACS Appl. Nano Mater. 2024; 7: 5899
- 25g Cui W, Zhu H, Jia M, Ao W, Zhang Y, Zhaorigetu B. React. Kinet., Mech. Catal. 2013; 109: 551
- 26a Wu Z, Wang W, Guo H, Gao G, Huang H, Chang M. Nat. Commun. 2022; 13: 3344
- 26b Kegnæs S, Mielby J, Mentzel UV, Christensen CH, Riisager A. Green Chem. 2010; 12: 1437
- 26c Oliveira RL, Ledwa KA, Chernyayeva O, Praetz S, Schlesiger C, Kepinski L. Inorg. Chem. 2023; 62: 13554
- 27a See ref. 17g
- 27b Panja D, Paul B, Balasubramaniam B, Gupta RK, Kundu S. Catal. Commun. 2020; 137: 105927
- 27c Li B, Wang Y, Chi Q, Yuan Z, Liu B, Zhang Z. New J. Chem. 2021; 45: 4464
- 27d Wu Y, Zhu Q, Xu H, Yang J, Wang Y, Wang C, Hu Z, Zhang Z. Chem. Asian J. 2025; 20: e202400984
- 27e She W, Wang J, Li XLi J, Mao G, Li W, Li G. J. Catal. 2021; 401: 17
- 27f See ref. 21e
- 27g Kodama S, Yoshida J, Nomoto A, Ueta Y, Yano S, Ueshima M, Ogawa A. Tetrahedron Lett. 2010; 51: 2450
- 27h Gumus I, Ruzgar A, Karatas Y, Gülcan M. Mol. Catal. 2021; 501: 111363
- 27i Chen G.-J, Ma H.-C, Xin W.-L, Li X.-B, Jin F.-Z, Wang J.-S, Liu M.-Y, Dong Y.-B. Inorg. Chem. 2017; 56: 654
- 28a Li Y.-H, Wang Y.-F, Li J.-Y, Qi M.-Y, Conte M, Tang Z.-R, Xu Y.-J. ACS Catal. 2024; 14: 657
- 28b Han X, Chen X, Zou Y, Zhang S. Appl. Catal., B 2020; 268: 118451
- 28c He W, Wang L, Sun C, Wu K, He S, Chen J, Wu P, Yu Z. Chem. Eur. J. 2011; 17: 13308
- 29a Angerasa FT, Chang C.-Y, Moges EA, Huang W.-H, Lakshmanan K, Nikodimos Y, Lee J.-F, Habtu NG, Tsai M.-C, Su W.-N, Hwang BJ. Mater. Today Energy 2023; 34: 101312
- 29b Henriquez DD. O, Cho I, Yang H, Choi J, Kang M, Chang KS, Jeong CB, Han SW, Park I. ACS Appl. Nano Mater. 2021; 4: 7
- 29c Khan MdA. R, Mamun MS. A, Ara MH. Microchem. J. 2021; 171: 106840
- 29d Zhang X, Hao N, Dong X, Chen S, Zhou Z, Zhang Y, Wang K. RSC Adv. 2016; 6: 69973
- 29e Lemus J, Bedia J, Calvo L, Simakov IL, Murzin DYu, Etzold BJ. M, Rodriguez JJ, Gilarranz MA. Catal. Sci. Technol. 2016; 6: 5196
- 29f Ji W, Qi W, Tang S, Peng H, Li S. Nanomaterials 2015; 5: 2203
- 29g Du J.-J, Chen C, Gan Y.-L, Zhang R.-H, Yang C.-Y, Zhou X.-W. Int. J. Hydrogen Energy 2014; 39: 17634
- 30a Das A, Mohit, Thomas KR. J. J. Org. Chem. 2023; 88: 14065
- 30b Ruffoni A, Hampton C, Simonetti M, Leonori D. Nature 2022; 610: 81
- 30c Salzmann K, Segarra C, Albrecht M. Angew. Chem. Int. Ed. 2020; 59: 8932
- 31 Liang Y.-F, Bilal M, Tang L.-Y, Wang T.-Z, Guan Y.-Q, Cheng Z, Zhu M, Wei J, Jiao N. Chem. Rev. 2023; 123: 12313
- 32 Murugesan K, Sagadevan A, Peng L, Savateev O, Rueping M. ACS Catal. 2023; 13: 13414
- 33a Lin X, Wu M, Wu D, Kuga S, Endo T, Huang Y. Green Chem. 2011; 13: 283
- 33b Esmaeilifar A, Yazdanpour M, Rowshanzamir S, Eikani MH. Int. J. Hydrogen Energy 2011; 36: 5500
- 34a Liu Z, Lee JY, Chen W, Han M, Gan LM. Langmuir 2004; 20: 181
- 34b Milazzo G, Caroli S, Braun RD. J. Electrochem. Soc. 1978; 125: 261C
- 35a Zhang H, She G, Xu J, Li S, Liu Y, Luo J, Shi W. J. Mater. Chem. A 2022; 10: 4952
- 35b Kaur A, Chahal P, Hogan T. IEEE Electron Device Lett. 2016; 37: 142
- 35c Kim KT, Jin S.-H, Chang S.-C, Park D.-S. Bull. Korean Chem. Soc. 2013; 34: 3835
- 35d Mitchenko SA, Khomutov EV, Shubin AA, Shul’ga YM. Theor. Exp. Chem. 2003; 39: 255
- 35e Larrieu G, Dubois E, Wallart X, Baie X, Katcki J. J. Appl. Phys. 2003; 94: 7801
- 35f Chizh KV, Arapkina LV, Dubkov VP, Stavrovskii DB, Yuryev VA, Storozhevykh MS. Optoelectronics, Instrumentation and Data Processing 2022; 58: 616
- 35g Gao H, Liao S, Zhang Y, Wang L, Zhang L. Int. J. Hydrogen Energy 2017; 42: 20658
- 35h Zhu J, Somorjai GA. Nano Lett. 2001; 1: 8
- 35i Wang Z, Shoji M, Ogata H. Appl. Surf. Sci. 2012; 259: 219
- 36a Borah AJ, Yan G. Org. Biomol. Chem. 2015; 13: 8094
- 36b Cadot S, Rameau N, Mangematin S, Pinel C, Djakovitch L. Green Chem. 2014; 16: 3089
- 36c Huang J, Liu Z, Liu X, He C, Chow SY, Pan J. Langmuir 2005; 21: 699
- 37a Yu X, Zhao Z, Zhu L, Tan S, Fu W, Wang L, An Y. Mol. Catal. 2022; 519: 112152
- 37b Mecozzi F, Dong JJ, Angelone D, Browne WR, Eisink NN. H. M. Eur. J. Org. Chem. 2019; 42: 7151
- 37c Utamuradova SB, Daliev SK, Stanchik AV, Rakhmanov DA. E3S Web Conf. 2023; 402: 14014
- 37d Tsang JC, Yokota Y, Matz R, Rubloff G. Appl. Phys. Lett. 1984; 44: 430
- 37e Iatsunskyi I, Nowaczyk G, Jurga S, Fedorenko V, Pavlenko M, Smyntyna V. Optik 2015; 126: 1650
- 37f Singh NB, Sarkar U. J. Mol. Model. 2014; 20: 2537
- 38a Kushvaha SK, Kallenbach P, Gorantla SM. N. V. T, Herbst-Irmer R, Stalke RD, Roesky HW. Chem. Eur. J. 2024; 30: e202303113
- 38b Torstensen K, Ghosh A. ACS Org. Inorg. Au 2024; 4: 102
- 38c Wang T.-H, Gole JL, White MG, Watkins C, Street SC, Fang Z, Dixon DA. Chem. Phys. Lett. 2011; 501: 159
- 38d Schnurre SM, Gröbner J, Schmid-Fetzer R. J. Non-Cryst. Solids 2004; 336: 1
- 38e Seth M, Faegri K, Schwerdtfeger P. Angew. Chem. Int. Ed. 1998; 37: 2493
- 39a Wan K, Lu C, Cong N, Lv K, Daia Z, Li F. J. Mater. Chem. C 2024; 12: 5355
- 39b Sen T, Sarkar P, Sutradhar S, Das D, Ghosh BN. Inorg. Chem. Commun. 2024; 170: 113438
- 39c Jakubowski M, Łakomska I, Kaszuba A, Wojtczak A, Sitkowski J, Jarzęcki AA. Int. J. Mol. Sci. 2022; 23: 3656
- 39d Ehret F, Filippou V, Blickle S, Bubrin M, Záliš S, Kaim W. Chem. Eur. J. 2021; 27: 3374
- 39e Bauer S, Záliš S, Fiedler J, Ringenberg MR, Kaim W. Eur. J. Inorg. Chem. 2020; 25: 2435
- 39f Aleksandrov HA, Neyman KM, Vayssilov GN. Phys. Chem. Chem. Phys. 2015; 17: 14551
- 40a Yu F.-Y, Lang Z.-L, Yin L.-Y, Feng K, Xia Y.-J, Tan H.-Q, Zhu H.-T, Zhong J, Kang Z.-H, Li Y.-G. Nat. Commun. 2020; 11: 490
- 40b Vovk EI, Kalinkin AV, Smirnov MYu, Klembovskii IO, Bukhtiyarov VI. J. Phys. Chem. C 2017; 121: 17297
- 40c Babenko V, Murdock AT, Koós AA, Britton J, Crossley A, Holdway P, Moffat J, Huang J, Alexander-Webber JA, Nicholas RJ, Grobert N. Nat. Commun. 2015; 6: 7536
- 40d Grunthaner PJ, Grunthaner FJ, Madhukar A. J. Vac. Sci. Technol. 1982; 20: 680
- 41a Zhou Z.-Y, Kang X, Song Y, Chen S. Chem. Commun. 2012; 48: 3391
- 41b Chusuei CC, Wayu M. Electronic Properties of Carbon Nanotubes . Marulanda JM. IntechOpen; London: 2011
- 42a Alshatwi AA, Athinarayanan J, Subbarayan PV. J. Mater. Sci.: Mater. Med. 2015; 26: 7
- 42b See ref. 33a
- 42c See ref. 33b
- 42d See ref. 34a
- 43a Rana S, Bera A, Sarkar P, Shee U, Sinha G, Bera D, Khatua BB, Mukhopadhyay C. Appl. Organomet. Chem. 2024; 39: e7821
- 43b Kozuch S, Martin JM. L. ACS Catal. 2012; 2: 2787
- 44a Nandi R, Ajarul S, Mandal PK, Manna AS, Kayet A, Maiti DK. J. Org. Chem. 2024; 89: 2556
- 44b Hong K, Shu J, Dong S, Zhang Z, He Y, Liu M, Huang J, Hu W, Xu X. ACS Catal. 2022; 12: 14185
- 44c Li J, Jia X, Qiu J, Wang M, Chen J, Jing M, Xu Y, Zheng X, Dai H. J. Org. Chem. 2022; 87: 13945
- 44d Ramarao JJ, Yadav S, Satyam K, Suresh S. RSC Adv. 2022; 12: 7621
- 44e Lin Z, Zhang Z, Mai J, Huang Z, Lv S, Wu D, Xie F, Li B. ACS Sustainable Chem. Eng. 2022; 10: 13742
- 44f Bazkiaei AR, Wiseman M, Findlater M. RSC Adv. 2021; 11: 15284
- 45a García-Franco A, Godoy P, Duque E, Ramos JL. Microb. Cell Fact. 2024; 23: 69
- 45b Takeshima H, Satoh K, Kamigaito M. J. Polym. Sci. 2020; 58: 91
- 45c Doll KM, Walter EL, Murray RE. Int. J. Sustainable Eng. 2018; 11: 26
- 45d Takemoto M, Achiwa K. Chem. Pharm. Bull. 2001; 49: 639
- 45e Walling C, Wolfstirn KB. J. Am. Chem. Soc. 1947; 69: 852
- 46a Di Michele A, Giovagnoli S, Filipponi P, Venturoni F, Gioiello A. Tetrahedron Lett. 2021; 86: 153509
- 46b Schaap AP, Akhavan-Tafti H. US5698728A, 1997
- 46c Voloshin AI, Sharipov GL, Kazakov VP, Tolstikov GA. Russ. Chem. Bull. 1987; 36: 1868
- 47a Ayed C, da Silva LC, Wang D, Zhang KA. I. J. Mater. Chem. A 2018; 6: 22145
- 47b Bastos EL, Farahani P, Bechara EJ. H, Baader WJ. J. Phys. Org. Chem. 2017; 30: e3725
- 47c Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y. Green Chem. 2015; 17: 5009
- 47d Kopecky KR, Filby JE, Mumford C, Lockwood PA, Ding J.-Y. Can. J. Chem. 1975; 53: 1103