Subscribe to RSS
DOI: 10.1055/a-2592-2072
Asymmetric Synthesis of 3-Alkyl 3-Alkyloxy-2-oxindoles by Enantioconvergent Alkoxylation with Alcohols
We are grateful for the financial support from the National Natural Science Foundation of China (22271199, 92256303), and Sichuan Science and Technology Program (No. 2023YFSY0063).

Abstract
A highly enantioselective alkoxylation reaction of 3-bromo-3-substituted 2-oxindoles with alcohols was achieved by a chiral Ni(II)/N,N′-dioxide complex. This strategy provided an efficient route to various enantioenriched 3-alkyl 3-alkyloxy-2-oxindoles with good yield and enantiomeric ratio (40 examples, up to 99% yield, 95:5 er). Moreover, phenol and benzenethiol were also compatible with the reaction conditions. The gram-scale synthesis of an optically active product and its further transformation into CPC-1 analogue demonstrated the potential utility of the method. In addition, a catalytic cycle as well as a possible working mode was provided to understand the enantioselectivity of the reaction.
Key words
asymmetric synthesis - alkoxylation - 3-substituted oxindoles - chiral N,N′-dioxide - nickelSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2592-2072.
- Supporting Information
Publication History
Received: 27 March 2025
Accepted after revision: 22 April 2025
Accepted Manuscript online:
22 April 2025
Article published online:
14 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Shen K, Feng XM. Chem. Sci. 2012; 3: 327
- 1b Cao ZY, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
- 1c Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 4284
- 1d Khetmalis YM, Shivani M, Chandra Sekhar KV. G. Biomed. Pharmacother. 2021; 141: 111842
- 2a Carle JS, Christophersen C. J. Am. Chem. Soc. 1979; 101: 4012
- 2b Morales-Rios MS, Suarez-Castillo OR, Joseph-Nathan P. J. Org. Chem. 1999; 64: 1086
- 2c Kitajima M, Mori I, Arai K, Kogure N, Takayama H. Tetrahedron Lett. 2006; 47: 3199
- 2d Kawasaki T, Shinada M, Ohzono M, Ogawa A, Terashima R, Sakamoto M. J. Org. Chem. 2008; 73: 5959
- 2e Ignatenko VA, Zhang P, Viswanathan R. Tetrahedron Lett. 2011; 52: 1269
- 2f Singh A, Gregory PR. Org. Lett. 2011; 13: 2118
- 2g Trost BM, Osipov M. Angew. Chem. Int. Ed. 2013; 52: 9176
- 2h Ghosh S, Bhunia S, Kakde BN, De S, Bisai A. Chem. Commun. 2014; 50: 2434
- 2i Chen SK, Ma WQ, Yan ZB, Zhang FM, Wang SH, Tu YQ, Zhang XM, Tian JM. J. Am. Chem. Soc. 2018; 140: 10099
- 2j Lu XB, Bai YL, Li Y, Shi YF, Li LJ, Zhong FR. Org. Lett. 2018; 20: 7937
- 2k Yamaguchi M, Manabe K. Org. Lett. 2023; 25: 4913
- 3a Kanemasa S, Ishimaru T. J. Am. Chem. Soc. 2006; 128: 16488
- 3b Itoh T, Sano D. Org. Lett. 2008; 10: 1593
- 3c Barbas C, Candeias N, Bui T. J. Am. Chem. Soc. 2010; 132: 5574
- 3d Tan CH, Yang YY. Org. Lett. 2012; 14: 4762
- 4a Zheng K, Lin LL, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2011; 50: 2573
- 4b Zhu B, Huang KW, Jiang ZY. Angew. Chem. Int. Ed. 2013; 52: 6666
- 4c Saidalimu I, He XP, Wu FH. Angew. Chem. Int. Ed. 2013; 52: 5566
- 4d Chen QG, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2016; 55: 5286
- 4e Wang J, Chen XQ, Yang H. Org. Lett. 2018; 20: 7535
- 4f Moskowitz M, Wolf C. Angew. Chem. Int. Ed. 2019; 58: 3402
- 4g Xu JF, Ren HJ. Org. Chem. Front. 2019; 6: 172
- 4h Tang XX, Dong SX, Feng XM. Org. Lett. 2021; 23: 8419
- 4i Zhou Y, Xiao YC, Chen FE. Org. Lett. 2022; 24: 791
- 4j Cao SX, Han J, He ZJ. Org. Chem. Front. 2022; 9: 643
- 4k Jiang B, Chen ZC, Chen YC. ACS Catal. 2024; 14: 628
- 5a Jones K, Vallverdú L, Escolano C. Tetrahedron 2002; 58: 9541
- 5b Zhu SQ, Zhao DY. J. Org. Chem. 2022; 87: 16867
- 6a Singh R, Jadhav A. Adv. Synth. Catal. 2017; 359: 3917
- 6b Liu XL, Zhou Y. Org. Chem. Front. 2019; 6: 256
- 6c Zheng T, Li ZQ, Xu J. Tetrahedron 2023; 133: 133274
- 7a Xia Y, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2015; 54: 13748
- 7b Luo XJ, Jiang ZY, Wang TL. Chem. Eur. J. 2024; 30: e202401325
- 7c Luo RL, Xie MS, Guo HM. Org. Chem. Front. 2024; 11: 1817
- 8a Liu XH, Lin LL, Feng XM. Acc. Chem. Res. 2011; 44: 574
- 8b Liu XH, Lin LL, Feng XM. Org. Chem. Front. 2014; 1: 298
- 8c Liu XH, Zheng HF, Xia Y, Lin LL, Feng XM. Acc. Chem. Res. 2017; 50: 2621
- 8d Liu XH, Dong SX, Lin LL, Feng XM. Chin. J. Chem. 2018; 36: 791
- 8e Dong SX, Liu XH, Feng XM. Acc. Chem. Res. 2022; 55: 415
- 8f Chen DF, Gong LZ. Org. Chem. Front. 2023; 10: 3676
- 8g Yang W, Pu MP, Liu XH, Feng XM. Chin. Chem. Lett. 2023; 34: 107791
- 8h Chen M, Yang LQ, Liu XH, Feng XM. Sci. China Chem. 2024; 67: 542
- 8i He CL, Liu XH, Feng XM. Chin. Chem. Lett. 2023; 34: 107487
- 8j Xu N, Pu MP, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2024; 63: e202314256
- 8k Liu ZZ, Wu HL, Liu XH, Dong SX, Hong X, Feng XM. J. Am. Chem. Soc. 2024; 146: 18050
- 8l Yang LK, Ning LC, Liu XH, Cao WD, Feng XM. CCS Chem. 2025; 7: 573
- 8m Xiao ZJ, Pu MP, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2025; 64: e202414712
- 9a Shen K, Liu XH, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2011; 50: 4684
- 9b Guo J, Liu XH, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2013; 52: 10245
- 9c Zhong FR, Lu YX. Angew. Chem. Int. Ed. 2013; 52: 943
- 9d Ran GY, Du W, Chen YC. Angew. Chem. Int. Ed. 2019; 58: 9210
- 9e Wang W, Liu YB, Feng XM. Angew. Chem. Int. Ed. 2022; 61: e202208837
- 9f Li S, Liu XG, Liu L. J. Am. Chem. Soc. 2023; 145: 27120
- 9g Qing B, Liu YB, Feng XM. J. Am. Chem. Soc. 2025; 147: 7729
- 10a Liu XH, Yang DX, Wang R. ACS Catal. 2018; 8: 10888
- 10b Xu J, Zhong ZW, Jiang MY, Zhou YQ, Liu XH, Feng XM. CCS Chem. 2020; 2: 1894
- 10c Wei HB, Xie WQ. Org. Chem. Front. 2021; 8: 3255
- 10d Li ZG, Tang ZQ, Zhong ZW, Liu XH, Feng XM. Synlett 2023; 34: 2405
- 10e Zong ZW, Lin LL, Feng XM. Sci. China Chem. 2023; 66: 799
- 10f Huo JY, Yan JH, Wang XL, Xie WQ. ACS Catal. 2023; 13: 15007
- 10g Zhen L, Zhang FM, Tu YQ, Zhang XM. Org. Lett. 2023; 25: 7252
- 10h Li HY, Zhou YQ, Tan Z, Wang XY, Zhang YX, Wang F, Feng XM, Liu XH. Chem. Commun. 2024; 60: 4354
- 10i Zeng Z, Yang LQ, Xiao ZJ, Chen L, Zhong ZW, Wang F, Liu XH, Dong SX, Feng XM. ACS Catal. 2024; 14: 2908
- 10j Dong LJ, Zhang XM, Tu YQ, Wang SH. Org. Lett. 2024; 26: 3086
- 11 Wang Z, Liu XH, Feng XM. Aldrichimica ACTA 2020; 53: 3
- 12 CCDC 2422529 (3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
For representative reviews, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For reviews, see:
For recent examples, see:
For selected examples, see:
For selected examples, see: