RSS-Feed abonnieren
DOI: 10.1055/a-2592-2072
Asymmetric Synthesis of 3-Alkyl 3-Alkyloxy-2-oxindoles by Enantioconvergent Alkoxylation with Alcohols
Autor*innen
We are grateful for the financial support from the National Natural Science Foundation of China (22271199, 92256303), and Sichuan Science and Technology Program (No. 2023YFSY0063).

Abstract
A highly enantioselective alkoxylation reaction of 3-bromo-3-substituted 2-oxindoles with alcohols was achieved by a chiral Ni(II)/N,N′-dioxide complex. This strategy provided an efficient route to various enantioenriched 3-alkyl 3-alkyloxy-2-oxindoles with good yield and enantiomeric ratio (40 examples, up to 99% yield, 95:5 er). Moreover, phenol and benzenethiol were also compatible with the reaction conditions. The gram-scale synthesis of an optically active product and its further transformation into CPC-1 analogue demonstrated the potential utility of the method. In addition, a catalytic cycle as well as a possible working mode was provided to understand the enantioselectivity of the reaction.
Key words
asymmetric synthesis - alkoxylation - 3-substituted oxindoles - chiral N,N′-dioxide - nickelSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2592-2072.
- Supporting Information (PDF) (opens in new window)
Publikationsverlauf
Eingereicht: 27. März 2025
Angenommen nach Revision: 22. April 2025
Accepted Manuscript online:
22. April 2025
Artikel online veröffentlicht:
14. Mai 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Shen K, Feng XM. Chem. Sci. 2012; 3: 327
- 1b Cao ZY, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
- 1c Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 4284
- 1d Khetmalis YM, Shivani M, Chandra Sekhar KV. G. Biomed. Pharmacother. 2021; 141: 111842
- 2a Carle JS, Christophersen C. J. Am. Chem. Soc. 1979; 101: 4012
- 2b Morales-Rios MS, Suarez-Castillo OR, Joseph-Nathan P. J. Org. Chem. 1999; 64: 1086
- 2c Kitajima M, Mori I, Arai K, Kogure N, Takayama H. Tetrahedron Lett. 2006; 47: 3199
- 2d Kawasaki T, Shinada M, Ohzono M, Ogawa A, Terashima R, Sakamoto M. J. Org. Chem. 2008; 73: 5959
- 2e Ignatenko VA, Zhang P, Viswanathan R. Tetrahedron Lett. 2011; 52: 1269
- 2f Singh A, Gregory PR. Org. Lett. 2011; 13: 2118
- 2g Trost BM, Osipov M. Angew. Chem. Int. Ed. 2013; 52: 9176
- 2h Ghosh S, Bhunia S, Kakde BN, De S, Bisai A. Chem. Commun. 2014; 50: 2434
- 2i Chen SK, Ma WQ, Yan ZB, Zhang FM, Wang SH, Tu YQ, Zhang XM, Tian JM. J. Am. Chem. Soc. 2018; 140: 10099
- 2j Lu XB, Bai YL, Li Y, Shi YF, Li LJ, Zhong FR. Org. Lett. 2018; 20: 7937
- 2k Yamaguchi M, Manabe K. Org. Lett. 2023; 25: 4913
- 3a Kanemasa S, Ishimaru T. J. Am. Chem. Soc. 2006; 128: 16488
- 3b Itoh T, Sano D. Org. Lett. 2008; 10: 1593
- 3c Barbas C, Candeias N, Bui T. J. Am. Chem. Soc. 2010; 132: 5574
- 3d Tan CH, Yang YY. Org. Lett. 2012; 14: 4762
- 4a Zheng K, Lin LL, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2011; 50: 2573
- 4b Zhu B, Huang KW, Jiang ZY. Angew. Chem. Int. Ed. 2013; 52: 6666
- 4c Saidalimu I, He XP, Wu FH. Angew. Chem. Int. Ed. 2013; 52: 5566
- 4d Chen QG, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2016; 55: 5286
- 4e Wang J, Chen XQ, Yang H. Org. Lett. 2018; 20: 7535
- 4f Moskowitz M, Wolf C. Angew. Chem. Int. Ed. 2019; 58: 3402
- 4g Xu JF, Ren HJ. Org. Chem. Front. 2019; 6: 172
- 4h Tang XX, Dong SX, Feng XM. Org. Lett. 2021; 23: 8419
- 4i Zhou Y, Xiao YC, Chen FE. Org. Lett. 2022; 24: 791
- 4j Cao SX, Han J, He ZJ. Org. Chem. Front. 2022; 9: 643
- 4k Jiang B, Chen ZC, Chen YC. ACS Catal. 2024; 14: 628
- 5a Jones K, Vallverdú L, Escolano C. Tetrahedron 2002; 58: 9541
- 5b Zhu SQ, Zhao DY. J. Org. Chem. 2022; 87: 16867
- 6a Singh R, Jadhav A. Adv. Synth. Catal. 2017; 359: 3917
- 6b Liu XL, Zhou Y. Org. Chem. Front. 2019; 6: 256
- 6c Zheng T, Li ZQ, Xu J. Tetrahedron 2023; 133: 133274
- 7a Xia Y, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2015; 54: 13748
- 7b Luo XJ, Jiang ZY, Wang TL. Chem. Eur. J. 2024; 30: e202401325
- 7c Luo RL, Xie MS, Guo HM. Org. Chem. Front. 2024; 11: 1817
- 8a Liu XH, Lin LL, Feng XM. Acc. Chem. Res. 2011; 44: 574
- 8b Liu XH, Lin LL, Feng XM. Org. Chem. Front. 2014; 1: 298
- 8c Liu XH, Zheng HF, Xia Y, Lin LL, Feng XM. Acc. Chem. Res. 2017; 50: 2621
- 8d Liu XH, Dong SX, Lin LL, Feng XM. Chin. J. Chem. 2018; 36: 791
- 8e Dong SX, Liu XH, Feng XM. Acc. Chem. Res. 2022; 55: 415
- 8f Chen DF, Gong LZ. Org. Chem. Front. 2023; 10: 3676
- 8g Yang W, Pu MP, Liu XH, Feng XM. Chin. Chem. Lett. 2023; 34: 107791
- 8h Chen M, Yang LQ, Liu XH, Feng XM. Sci. China Chem. 2024; 67: 542
- 8i He CL, Liu XH, Feng XM. Chin. Chem. Lett. 2023; 34: 107487
- 8j Xu N, Pu MP, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2024; 63: e202314256
- 8k Liu ZZ, Wu HL, Liu XH, Dong SX, Hong X, Feng XM. J. Am. Chem. Soc. 2024; 146: 18050
- 8l Yang LK, Ning LC, Liu XH, Cao WD, Feng XM. CCS Chem. 2025; 7: 573
- 8m Xiao ZJ, Pu MP, Liu XH, Feng XM. Angew. Chem. Int. Ed. 2025; 64: e202414712
- 9a Shen K, Liu XH, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2011; 50: 4684
- 9b Guo J, Liu XH, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2013; 52: 10245
- 9c Zhong FR, Lu YX. Angew. Chem. Int. Ed. 2013; 52: 943
- 9d Ran GY, Du W, Chen YC. Angew. Chem. Int. Ed. 2019; 58: 9210
- 9e Wang W, Liu YB, Feng XM. Angew. Chem. Int. Ed. 2022; 61: e202208837
- 9f Li S, Liu XG, Liu L. J. Am. Chem. Soc. 2023; 145: 27120
- 9g Qing B, Liu YB, Feng XM. J. Am. Chem. Soc. 2025; 147: 7729
- 10a Liu XH, Yang DX, Wang R. ACS Catal. 2018; 8: 10888
- 10b Xu J, Zhong ZW, Jiang MY, Zhou YQ, Liu XH, Feng XM. CCS Chem. 2020; 2: 1894
- 10c Wei HB, Xie WQ. Org. Chem. Front. 2021; 8: 3255
- 10d Li ZG, Tang ZQ, Zhong ZW, Liu XH, Feng XM. Synlett 2023; 34: 2405
- 10e Zong ZW, Lin LL, Feng XM. Sci. China Chem. 2023; 66: 799
- 10f Huo JY, Yan JH, Wang XL, Xie WQ. ACS Catal. 2023; 13: 15007
- 10g Zhen L, Zhang FM, Tu YQ, Zhang XM. Org. Lett. 2023; 25: 7252
- 10h Li HY, Zhou YQ, Tan Z, Wang XY, Zhang YX, Wang F, Feng XM, Liu XH. Chem. Commun. 2024; 60: 4354
- 10i Zeng Z, Yang LQ, Xiao ZJ, Chen L, Zhong ZW, Wang F, Liu XH, Dong SX, Feng XM. ACS Catal. 2024; 14: 2908
- 10j Dong LJ, Zhang XM, Tu YQ, Wang SH. Org. Lett. 2024; 26: 3086
- 11 Wang Z, Liu XH, Feng XM. Aldrichimica ACTA 2020; 53: 3
- 12 CCDC 2422529 (3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
For representative reviews, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For reviews, see:
For recent examples, see:
For selected examples, see:
For selected examples, see: