Subscribe to RSS
DOI: 10.1055/a-2589-4376
Ruthenium-Catalyzed Isomerization/(Transfer) Hydrogenation of Allylic Alcohols
This work was supported by the National Natural Science Foundation of China (22071242 and 21871260), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), and the Fujian Natural Science Foundation (2021J01522).

Abstract
Allylic alcohols, renowned for their reactivity in epoxidation, dihydroxylation, allylic substitution, and isomerization, stand as pivotal intermediates in organic synthesis. While numerous reviews have delved into the above transformations of allylic alcohols, a significant void remains in the comprehensive discussion of their conversion into saturated alcohols under (transfer) hydrogenation conditions. This short review endeavors to fill that void by highlighting the tandem isomerization/(transfer) hydrogenation of allylic alcohols facilitated by ruthenium catalysts. We hope that this account will advance the understanding and application of allylic alcohols in (transfer) hydrogenation, fostering innovation and discovery in this critical area.
1 Introduction
2 Ruthenium-Catalyzed Conversion of Allylic Alcohols into Saturated Alcohols under Transfer Hydrogenation Conditions
3 Ruthenium-Catalyzed Conversion of Allylic Alcohols into Saturated Alcohols under Hydrogenation Conditions
4 Conclusion
Key words
allylic alcohol - hydrogenation - transfer hydrogenation - redox isomerization - ruthenium catalystPublication History
Received: 12 March 2025
Accepted after revision: 16 April 2025
Accepted Manuscript online:
16 April 2025
Article published online:
15 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Marshall JA. Chem. Rev. 2000; 100: 3163
- 1b Lumbroso A, Cooke ML, Breit B. Angew. Chem. Int. Ed. 2013; 52: 1890
- 1c Ortiz E, Shezaf J, Chang Y.-H, Krische MJ. ACS Catal. 2022; 12: 8164
- 2a van der Drift RC, Bouwman E, Drent E. J. Organomet. Chem. 2002; 650: 1
- 2b Uma R, Crévisy C, Grée R. Chem. Rev. 2003; 103: 27
- 2c Martín-Matute B, Bogár K, Edin M, Kaynak FB, Bäckvall J.-E. Chem. Eur. J. 2005; 11: 5832
- 2d Samec JS. M, Bäckvall J.-E, Andersson PG, Brandt P. Chem. Soc. Rev. 2006; 35: 237
- 2e Cadierno V, Crochet P, Gimeno J. Synlett 2008; 1105
- 2f Mantilli L, Mazet C. Chem. Lett. 2011; 40: 341
- 2g Lorenzo-Luis P, Romerosa A, Serrano-Ruiz M. ACS Catal. 2012; 2: 1079
- 2h Ahlsten N, Bartoszewicza A, Martín-Matute B. Dalton Trans. 2012; 41: 1660
- 2i Larionov E, Li H, Mazet C. Chem. Commun. 2014; 50: 9816
- 2j Cahard D, Gaillard S, Renaud J.-L. Tetrahedron Lett. 2015; 56: 6159
- 2k Zhong Y, Ren K, Xie X, Zhang Z. Chin. J. Org. Chem. 2016; 36: 258
- 2l Li H, Mazet C. Acc. Chem. Res. 2016; 49: 1232
- 2m Fiorito D, Scaringi S, Mazet C. Chem. Soc. Rev. 2021; 50: 1391
- 2n Zhang X.-X, Zhang Y, Liao L, Gao Y, Su HE. M, Yu J.-S. ChemCatChem 2022; 14: e202200126
- 2o Gao Y, Hong G, Yang B.-M, Zhao Y. Chem. Soc. Rev. 2023; 52: 5541
- 3a Palmer MJ, Wills M. Tetrahedron: Asymmetry 1999; 10: 2045
- 3b Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
- 3c Genet JP. Acc. Chem. Res. 2003; 36: 908
- 3d Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
- 3e Clapman SE, Hadzovic A, Morris RH. Coord. Chem. Rev. 2004; 248: 2201
- 3f Wu J, Chan AS. C. Acc. Chem. Res. 2006; 39: 711
- 3g Ikariya T, Murata K, Noyori R. Org. Biomol. Chem. 2006; 4: 393
- 3h Noyori R, Hashiguchi S. Acc. Chem. Res. 1997; 30: 97
- 3i Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
- 3j Handbook of Homogeneous Hydrogenation, Vol. 1–3. de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007
- 3k Ikariya T, Blacker AJ. Acc. Chem. Res. 2007; 40: 1300
- 3l Krische MJ, Sun Y. Acc. Chem. Res. 2007; 40: 1237
- 3m Wang C, Wu X, Xiao J. Chem. Asian J. 2008; 3: 1750
- 3n Johnson TC, Morris DJ, Wills M. Chem. Soc. Rev. 2010; 39: 81
- 3o Blacker AJ, Thompson P. Scale-Up Studies in Asymmetric Transfer Hydrogenation. In Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions. Blaser H.-U, Federsel H.-J. Wiley-VCH; Weinheim: 2010: 265-290
- 3p Ikariya T. Top. Organomet. Chem. 2011; 37: 31
- 3q Ager DJ, de Vries AH. M, de Vries JG. Chem. Soc. Rev. 2012; 41: 3340
- 3r Xie J, Zhou Q. Acta Chim. Sinica 2012; 70: 1427
- 3s Cotarca L, Verzini M, Volpicelli R. Chim. Oggi 2014; 32: 36
- 3t Wu X, Xiao J. Reduction of C=O to CHOH by Metal-Catalyzed Hydrogenation and Transfer Hydrogenation. In Comprehensive Organic Synthesis II. Elsevier; Oxford: 2014: 198-273
- 3u Štefane B, Požgan F. Catal. Rev. 2014; 56: 82
- 3v Ito J.-i, Nishiyama H. Tetrahedron Lett. 2014; 55: 3133
- 3w Sues PE, Demmans KZ, Morris RH. Dalton Trans. 2014; 43: 7650
- 3x Foubelo F, Nájera C, Yus M. Tetrahedron: Asymmetry 2015; 26: 769
- 3y Nedden HG, Zanotti-Gerosa A, Wills M. Chem. Rec. 2016; 16: 2623
- 3z Wu X, Wang C, Xiao J. Chem. Rec. 2016; 16: 2772
- 3aa Štefane B, Požgan F. Top. Curr. Chem. 2016; 374: 18
- 3ab Echeverria P.-G, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2016; 48: 2523
- 3ac Bartlett SL, Johnson JS. Acc. Chem. Res. 2017; 50: 2284
- 3ad Dub PA, Gordon JC. Nat. Rev. Chem. 2018; 2: 396
- 3ae Seo CS. G, Morris RH. Organometallics 2019; 38: 47
- 3af Cotman AE. Chem. Eur. J. 2020; 27: 39
- 3ag Phansavath P, Ratovelomanana-Vidal V, Molina Betancourt R, Echeverria PG, Ayad T. Synthesis 2021; 53: 30
- 3ah Asymmetric Hydrogenation and Transfer Hydrogenation . Ratovelomanana-Vidal V, Phansavath P. Wiley-VCH; Weinheim: 2021
- 3ai Zhang Y, Xu L, Lu Y, Zhang Z. Chin. J. Org. Chem. 2022; 42: 3221
- 3aj Yang S, Fang X. Tetrahedron 2023; 145: 133609
- 3ak Yang H, Yu H, Stolarzewicz IA, Tang W. Chem. Rev. 2023; 123: 9397
- 4 Ortiz E, Shezaf JZ, Shen W, Krische MJ. Chem. Sci. 2022; 13: 12625
- 5a Brown JM. Angew. Chem. Int. Ed. 1987; 26: 190
- 5b Bissel P, Sablong R, Lepoittevin J.-P. Tetrahedron: Asymmetry 1995; 6: 835
- 5c Makihara N, Ogo S, Watanabe Y. Organometallics 2001; 20: 497
- 5d Nanchen S, Pfaltz A. Helv. Chim. Acta 2006; 89: 1559
- 5e Tolstoy P, Engman M, Paptchikhine A, Bergquist J, Church TL, Leung AW. M, Andersson PG. J. Am. Chem. Soc. 2009; 131: 8855
- 5f Bernasconi M, Ramella V, Tosatti P, Pfaltz A. Chem. Eur. J. 2014; 20: 2440
- 5g Li J.-Q, Liu J, Krajangsri S, Chumnanvej N, Singh T, Andersson PG. ACS Catal. 2016; 6: 8342
- 5h Liu J, Krajangsri S, Yang J, Li J.-Q, Andersson PG. Nat. Catal. 2018; 1: 438
- 5i Ponra S, Yang J, Wu H, Rabten W, Andersson PG. Chem. Sci. 2020; 11: 11189
- 5j Wu H, Margarita C, Jongcharoenkamol J, Nolan MD, Singh T, Andersson PG. Chem. Sci. 2021; 12: 1937
- 6a Takaya H, Ohta T, Sayo N, Kumobayashi H, Akutagawa S, Inoue S.-i, Kasahara I, Noyori R. J. Am. Chem. Soc. 1987; 109: 1596
- 6b Kitamura M, Kasahara I, Manabe K, Noyori R, Takaya H. J. Org. Chem. 1988; 53: 708
- 6c Genêt JP, Pinel C, Ratovelomanana-Vidal V, Mallart S, Pfister X, Bischoff L, De Andrade MC. C, Darses S, Galopin C, Laffitte JA. Tetrahedron: Asymmetry 1994; 5: 675
- 6d Yang Z, Ebihara M, Kawamura T. J. Mol. Catal. A: Chem. 2000; 158: 509
- 6e Chen Q, Qing F.-L. Tetrahedron 2007; 63: 11965
- 6f Holz J, Schäffner B, Zayas O, Spannenberg A, Börner A. Adv. Synth. Catal. 2008; 350: 2533
- 6g Wang Q, Liu X, Liu X, Li B, Nie H, Zhang S, Chen W. Chem. Commun. 2014; 50: 978
- 7a Cadierno V, Francos J, Gimeno J, Nebra N. Chem. Commun. 2007; 2536
- 7b Cadierno V, Crochet P, Francos J, García-Garrido SE, Gimeno J, Nebra N. Green Chem. 2009; 11: 1992
- 8 Maytum HC, Francos J, Whatrup DJ, Williams JM. J. Chem. Asian J. 2010; 5: 538
- 9 Díaz-Álvarez AE, Crochet P, Cadierno V. Cat. Commun. 2011; 13: 91
- 10 Wu R, Beauchamps MG, Laquidara JM, Sowa JR. Jr. Angew. Chem. Int. Ed. 2012; 51: 2106
- 11 Bizet V, Pannecoucke X, Renaud J.-L, Cahard D. Adv. Synth. Catal. 2013; 355: 1394
- 12 Slagbrand T, Lundberg H, Adolfsson H. Chem. Eur. J. 2014; 20: 16102
- 13 Shoola CO, DelMastro T, Wu R, Sowa JR. Jr. Eur. J. Org. Chem. 2015; 1670
- 14 Dong W, Ren C, Zhu L, Luo P, Zhao Z, Lan S, Liu J, Yang S, Zhang Q, Fang X. ACS Catal. 2024; 14: 18753
- 15 Arai N, Okabe Y, Ohkuma T. Adv. Synth. Catal. 2019; 361: 5541
- 16 Wang K, Niu S, Guo X, Tang W, Xue D, Xiao J, Sun H, Wang C. J. Org. Chem. 2022; 87: 3804