Subscribe to RSS
DOI: 10.1055/a-2577-4220
Manganese-Catalyzed α-Trideuteromethylation of Sulfones
The research was supported by the National Natural Science Foundation of China (22371039), and the Fundamental Research Funds for the Central Universities (2232022A09).

Abstract
Recent advancements in deuteration techniques have garnered significant attention from both academia and industry. Herein, we report a manganese-catalyzed α-trideuteromethylation of sulfones with CD3OD as a deuterating reagent via a deuterium autotransfer strategy under mild conditions. Our approach yields target compounds with 60–96% efficiency and deuteration levels up to 99%. This methodology stands out due to its reliance on accessible deuterium sources, an earth-abundant transition-metal catalyst, and mild conditions.
Key words
manganese - homogeneous catalysis - deuterated methanol - α-trideuteromethylation - deuterium autotransferSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2577-4220.
- Supporting Information
Publication History
Received: 25 February 2025
Accepted after revision: 08 April 2025
Accepted Manuscript online:
08 April 2025
Article published online:
28 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Chem. Rev. 2022; 122: 6634
- 2 Gant TG. J. Med. Chem. 2014; 57: 3595
- 3 Schmidt C. Nat. Biotechnol. 2017; 35: 493
- 4 Sun Q, Soule JF. Chem. Soc. Rev. 2021; 50: 10806
- 5 Steverlynck J, Sitdikov R, Rueping M. Chem. Eur. J. 2021; 27: 11751
- 6 Sivakumar G, Kumar R, Yadav V, Gupta V, Balaraman E. ACS Catal. 2023; 13: 15013
- 7 Biswas N, Srimani D. J. Org. Chem. 2021; 86: 10544
- 8 Choi G, Hong SH. Angew. Chem. Int. Ed. 2018; 57: 6166
- 9 Dang TT, Ramalingam B, Seayad AM. ACS Catal. 2015; 5: 4082
- 10 Dang TT, Seayad AM. Adv. Synth. Catal. 2016; 358: 3373
- 11 Kaithal A, Schmitz M, Hölscher M, Leitner W. ChemCatChem 2019; 11: 5287
- 12 Chan LK, Poole DL, Shen D, Healy MP, Donohoe TJ. Angew. Chem. Int. Ed. 2014; 53: 761
- 13 Shee S, Kundu S. J. Org. Chem. 2021; 86: 6943
- 14 Tsukamoto Y, Itoh S, Kobayashi M, Obora Y. Org. Lett. 2019; 21: 3299
- 15 Mamidala R, Biswal P, Subramani MS, Samser S, Venkatasubbaiah K. J. Org. Chem. 2019; 84: 10472
- 16 Wang L, Neumann H, Beller M. Angew. Chem. Int. Ed. 2019; 58: 5417
- 17 Elangovan S, Neumann J, Sortais JB, Junge K, Darcel C, Beller M. Nat. Commun. 2016; 7: 12641
- 18 Ganguli K, Mandal A, Kundu S. ACS Catal. 2022; 12: 12444
- 19 Liu Y, Shao Z, Wang Y, Xu L, Yu Z, Liu Q. ChemSusChem 2019; 12: 3069
- 20 Mondal A, Karattil Suresh A, Sivakumar G, Balaraman E. Org. Lett. 2022; 24: 8990
- 21 Emayavaramban B, Chakraborty P, Dahiya P, Sundararaju B. Org. Lett. 2022; 24: 6219
- 22 Polidano K, Allen BD. W, Williams JM. J, Morrill LC. ACS Catal. 2018; 8: 6440
- 23 Liu Z, Yang Z, Yu X, Zhang H, Yu B, Zhao Y, Liu Z. Adv. Synth. Catal. 2017; 359: 4278
- 24 Das J, Singh K, Vellakkaran M, Banerjee D. Org. Lett. 2018; 20: 5587
- 25 Sklyaruk J, Borghs JC, El-Sepelgy O, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 775
- 26 Song D, Chen L, Li Y, Liu T, Yi X, Liu L, Ling F, Zhong W. Org. Chem. Front. 2021; 8: 120
- 27 Liu P, Chen X, Xu X, Yang L, Zeng G, Ye C, Shi Q, Yang J, Li F. J. Catal. 2022; 410: 333
- 28 Liu D, Xu X, Zhang P, Shi Q, Li F. J. Catal. 2024; 430: 115301
- 29 Yu K, Nie Q, Chen Q, Liu W. Nat. Commun. 2024; 15: 6798
- 30 Lin Q, Sun F, Wang T, Yang J, Tang J, Liu W. Adv. Synth. Catal. 2024; 367: e202401080
- 31 Tang J, He J, Zhao SY, Liu W. Angew. Chem. Int. Ed. 2023; 62: e202215882
- 32 Sun F, Chen X, Wang S, Sun F, Zhao S.-Y, Liu W. J. Am. Chem. Soc. 2023; 145: 25545
- 33 Corma A, Navas J, Sabater MJ. Chem. Rev. 2018; 118: 1410
- 34 Huang F, Liu Z, Yu Z. Angew. Chem. Int. Ed. 2016; 55: 862
- 35 Jankins TC, Fayzullin RR, Khaskin E. Organometallics 2018; 37: 2609
- 36 Manganese-Catalyzed α-Trideuteromethylation of Sulfones; General Procedure: In a nitrogen-filled glove box, an oven-dried Schlenk pressure tube (10 mL) containing a stirring bar was charged with [Mn] (1.0 mol%). Dry and degassed 1,4-dioxane (0.5 mL) and NaOtBu (50 mol%) were added and the mixture was stirred at room temperature for 5.0 min. Compound 1 (0.25 mmol) and CD3OD (2.5 mmol) were then added in sequence. The tube was brought out of the glovebox and heated at 120 °C for 12 h. Upon reaction completion, the reaction mixture was cooled to ambient temperature, concentrated in vacuo, and purified by column chromatography on silica gel (100–200 mesh) using PE/EtOAc as the eluent to afford the final product. ((1-Phenylethyl-1,2,2,2-d 4)sulfonyl)benzene (3) The procedure was followed using (benzylsulfonyl)benzene (0.25 mmol, 58.1 mg), CD3OD (2.5 mmol, 102 μL) stirred at 120 °C for 12 h. Purification by column chromatography (PE/EtOAc = 10:1) gave 3 (56.3 mg, 90%) as a white solid. 1H NMR (600 MHz, CDCl3): δ = 7.64–7.48 (m, 3 H), 7.42–7.37 (m, 2 H), 7.31–7.27 (m, 1 H), 7.27–7.22 (m, 2 H), 7.15–7.11 (m, 2 H), 4.22 (s, 0.15 H). 13C NMR (150 MHz, CDCl3): δ = 136.8, 133.7, 133.6, 129.4, 129.2, 128.8, 128.7, 128.4, 66.2–65.0, 13.7–12.7 HRMS (ESI): m/z [M + NH4]+ calcd for C14H14D4O2NS: 268.1304; found: 268.1301.