Subscribe to RSS
DOI: 10.1055/a-2575-9886
‘On Water’ Synthesis of Indolyl-Substituted Benzo[b]carbazoles via LiCl-Promoted HBF4-Catalyzed Annulation of ortho-Formylaryl Ketones with Indoles
This work was supported by the Science Research Project of Shenyang University of Chemical Technology (No. 2022YQ009), the Natural Science Foundation of Liaoning Province (grant no. 2023-MSLH-274), and by the National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology (LJ232410149002).

Abstract
A LiCl-promoted, HBF₄-catalyzed intermolecular cascade cyclization of indoles and ortho-formylaryl ketones has been developed, utilizing saturated aqueous LiCl solutions as the solvent for the rapid synthesis of indolyl benzo[b]carbazoles. This ‘on water’ synthetic approach exhibits excellent functional group tolerance, a broad substrate scope, and scalability, making it suitable for practical applications. Additionally, the fluorescence emission properties of the synthesized indolyl benzo[b]carbazole compounds were systematically investigated.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2575-9886.
- Supporting Information
Publication History
Received: 20 February 2025
Accepted after revision: 04 April 2025
Accepted Manuscript online:
04 April 2025
Article published online:
06 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Goodwin S, Smith AF, Horning EC. J. Am. Chem. Soc. 1959; 81: 1903
- 1b Chakraborty DP, Barman BK, Bose PK. Tetrahedron 1965; 21: 681
- 1c O’Brien WM, Bagby GF. Pharmacotherapy 1987; 7: 16
- 1d Pindur U, Haber M, Sattler K. J. Chem. Educ. 1993; 70: 263
- 1e Knölker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303
- 1f Asche C, Frank W, Albert A, Kucklaender U. Bioorg. Med. Chem. 2005; 13: 819
- 1g Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112: 3193
- 1h Sarmah M, Das DJ, Dutta D, Baishya R, Gogol P. ACS Omega 2022; 7: 47680
- 2a Wang H, Liu F, Xie L, Tang C, Peng B, Huang W, Wei W. J. Phys. Chem. C 2011; 115: 6961
- 2b Qian X, Zhu Y, Chang W, Song J, Pan B, Lu L, Gao H, Zheng J. ACS Appl. Mater. Interfaces 2015; 7: 9015
- 2c Ivaniuk K, Cherpak V, Stakhira P, Hotra Z, Minaev B, Baryshnikov G, Stromylo E, Volyniuk D, Grazulevicius JV, Lazauskas A, Tamulevicius S, Witulski B, Light ME, Gawrys P, Whitby RJ, Wiosna-Salyga G, Luszczynska B. J. Phys. Chem. C 2016; 120: 6206
- 2d Joseph V, Thomas KR. J, Yang WY, Yadav RA. K, Dubey DK, Jou J.-H. Asian J. Org. Chem. 2018; 7: 1654
- 2e Fu X, Zhang X, Qian C, Ma Z, Li Z, Jiang H, Ma Z. Chem. Mater. 2023; 35: 347
- 3a Shi Z, Ding S, Cui Y, Jiao N. Angew. Chem. Int. Ed. 2009; 48: 7895
- 3b Jash M, Das B, Chowdhury C. J. Org. Chem. 2016; 81: 10987
- 3c Paul K, Jalal S, Kundal S, Chakraborty B, Jana U. Synthesis 2017; 49: 4205
- 3d Li B, Guo C, Shen N, Zhang X, Fan X. Org. Chem. Front. 2020; 7: 3698
- 3e Lu H, Zhao T, Bai J, Ye D, Xu P, Wei H. Angew. Chem. Int. Ed. 2020; 59: 23537
- 3f Wang Y, Jia D, Zeng J, Liu Y, Bu X, Yang X. Org. Lett. 2021; 23: 7740
- 3g Ref. 1h.
- 4a Protti S, Palmieri A, Petrini M, Fagnoni M, Ballini R, Albini A. Adv. Synth. Catal. 2013; 355: 643
- 4b Li Y, Pang Z, Zhang T, Yang J, Yu W. Tetrahedron 2015; 71: 3351
- 4c He Y, Zhang Y, Zhao H, Wang X, He G, Huang R, Wei S, Zhang Z, Fu Q. Adv. Synth. Catal. 2023; 366: 508
- 4d Taskesenligil Y, Saracoglu N. J. Org. Chem. 2024; 89: 17447
- 5a Prakash KS, Nagarajan R. Adv. Synth. Catal. 2012; 354: 1566
- 5b Takamatsu K, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 2892
- 5c Wang D, Wang S, Hao W, Tu S, Jiang B. Adv. Synth. Catal. 2020; 362: 3416
- 5d Hao T, Huang L, Wei Y, Shi M. Org. Lett. 2021; 23: 5133
- 5e Suresh S, Kavala V, Yao CF. J. Org. Chem. 2023; 88: 3666
- 5f Shekhar C, Satyanarayana G. J. Org. Chem. 2024; 89: 3732
- 6a Suárez A, García-García P, Fernández-Rodríguez MA, Sanz R. Adv. Synth. Catal. 2014; 356: 374
- 6b Saha S, Maji MS. Org. Biomol. Chem. 2020; 18: 1765
- 6c Ref. 5f.
- 7 Berne BJ, Weeks JD, Zhou R. Annu. Rev. Phys. Chem. 2009; 60: 85
- 8a Comprehensive Organic Reactions in Aqueous Media, 2nd ed. Li C.-J, Chan T.-H. John Wiley & Sons; Hoboken: 2007
- 8b Water in Organic Synthesis . Kobayashi S. Thieme; Stuttgart: 2012
- 8c Hashimoto T, Maruoka K. Chem. Res. 2007; 107: 5656
- 8d Chanda A, Fokin VV. Chem. Rev. 2009; 109: 725
- 8e Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
- 8f Butler RN, Coyne AG. Org. Biomol. Chem. 2016; 14: 9945
- 8g Kitanosono T, Masuda K, Xu P, Kobayashi S. Chem. Rev. 2018; 118: 679
- 8h Guo W, Liu X, Liu Y, Li C. ACS Catal. 2018; 8: 328
- 8i Ruiz-Lopez MF, Francisco JS, Martins-Costa MT. C, Anglada JM. Nat. Chem. Rev. 2020; 4: 459
- 8j Kitanosono T, Kobayashi S. Chem. Eur. J. 2020; 26: 9408
- 8k Yu J, Kincaid JR. A, Walde P, Gallou F, Lipshutz BH, Cortes-Clerget M. Chem. Sci. 2021; 12: 4237
- 8l Mase N, Nakai Y, Ohara N, Yoda H, Takabe K, Tanaka F, Barbas CF. J. Am. Chem. Soc. 2006; 128: 734
- 8m Wang Y, Liu S, Cheng L, Liu L, Li C. Org. Chem. Front. 2023; 10: 3021
- 8n Singh S, Kumar A, Nebhani L, Hazra CK. JACS Au 2023; 3: 3400
- 9a Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
- 9b Song CE, Park SJ, Hwang I.-S, Jung MJ, Shim SY, Bae HY, Jung JY. Nat. Commun. 2019; 10: 851
- 9c Wang B, Li T, Liu J, Wang S, Shi H, Jin H, Ryu DH, Zhang L. Adv. Synth. Catal. 2023; 365: 4155
- 9d Wang B, Liu J, Li T, Jin H, Zhang L. Org. Biomol. Chem. 2024; 22: 1146
- 9e Kim SB, Kim DH, Bae HY. Nat. Commun. 2024; 15: 3876
- 9f Ji Z, Wang X, Wang B, Shan Z, Jin H, Zhang L. Adv. Synth. Catal. 2024; 366: 3194
- 10a Chataigner I, Hess E, Toupet L, Piettre SR. Org. Lett. 2001; 3: 515
- 10b Hayashi Y, Tsuboi W, Shoji M, Suzuki N. J. Am. Chem. Soc. 2003; 125: 11208
- 10c Kwiatkowski P, Dudzinski K, Lyzwa D. Org. Lett. 2011; 13: 3624
- 10d Lyzwa D, Dudzinski K, Kwiatkowski P. Org. Lett. 2012; 14: 1540
- 10e Kwiatkowski P, Cholewiak A, Kasztelan A. Org. Lett. 2014; 16: 5930
- 10f Tyszka-Gumkowska A, Jurczak J. Org. Chem. Front. 2021; 8: 5888
- 10g Kopyt M, Tryniszewski M, Barbasiewicz M, Kwiatkowski P. Org. Lett. 2023; 25: 6818
- 11a Rideout DC, Breslow R. J. Am. Chem. Soc. 1980; 102: 7816
- 11b Breslow R, Maitra U, Rideout D. Tetrahedron Lett. 1983; 24: 1901
- 11c Breslow R, Rizzo CJ. J. Am. Chem. Soc. 1991; 113: 4340
- 11d Breslow R. Acc. Chem. Res. 1991; 24: 159
- 11e Pirrung MC, Sarma KD. Tetrahedron 2005; 61: 11456
- 11f Hyde AM, Zultanski SL, Waldman JH, Zhong Y. -L, Shevlin M, Peng F. Org. Process Res. Dev. 2017; 21: 1355
- 12a Lewis Acids in Organic Synthesis . Yamamoto H. Wiley-VCH; Weinheim: 2000: 9-58
- 12b Thompson A, Corley EG, Huntington MF, Grabowski EJ. J, Remenar JF, Collum DB. J. Am. Chem. Soc. 1998; 120: 2028
- 12c Capó M, Saá JM. J. Am. Chem. Soc. 2004; 126: 16738
- 12d Tokuda O, Aikawa T, Ikemoto T, Kurimoto I. Tetrahedron Lett. 2010; 51: 2832
- 12e Tanaka K, Kukita K, Ichibakase T, Kotani S, Nakajima M. Chem. Commun. 2011; 47: 5614
- 12f Erb J, Paull DH, Dudding T, Belding L, Lectka T. J. Am. Chem. Soc. 2011; 133: 7536
- 12g Yamashita K, Tabata Y, Yamakawa K, Mochizuku T, Matsui K, Hatano M, Ishihara K. J. Am. Chem. Soc. 2023; 145: 26238
- 13 Yang J, Zhang J, Li T, Liu Y, Jin H, Ryu DH, Zhang L. Adv. Synth. Catal. 2025; 367: e202401542
- 14a Jacq J, Einhorn C, Einhorn J. Org. Lett. 2008; 10: 3757
- 14b Phan DH. T, Kim B, Dong VM. J. Am. Chem. Soc. 2009; 131: 15608
- 14c Mishra PK, Kumar A, Verma AK. Chem. Commun. 2020; 56: 6122
- 15 Jacob N, Zaid Y, Oliveira JC. A, Ackermann L, Wencel-Delord J. J. Am. Chem. Soc. 2022; 144: 798
For literature on natural products and biologically active compounds containing a carbazole core, see:
For selective examples on carbazoles derivatives serving as optoelectronic materials, see:
For selective examples on the synthesis of benzocarbazoles via transition-metal catalysis, see:
For selective examples on the synthesis of benzocarbazoles via photocatalysis, see:
For selective examples on the synthesis of benzocarbazoles via Lewis acid catalysis, see:
For selective examples on the synthesis of benzocarbazoles via Brønsted acid catalysis, see:
For representative books on organic reactions in aqueous media, see:
For reviews, see:
For selective examples, see:
For seminal work on ‘on water’ reactions, see:
For recent examples, see:
Reactions with negative activation volume can be facilitated under high pressure, see:
The addition of salt to the aqueous reaction medium can enhance the hydrophobic hydration effects, see:
Lithium ion can function as a Lewis acid for the activation of carbonyl groups. For a representative review, see:
For selective examples, see:
For selected examples on the synthesis of ortho-formylaryl ketones, see: