RSS-Feed abonnieren
DOI: 10.1055/a-2572-0983
Unlocking C–OH Bond Activation for Radical C-Glycosylation of Native Saccharides
We acknowledge funding by the National Natural Science Foundation of China (22271127, 22071084), the Fundamental Research Funds for the Central Universities (lzujbky-2022-ey01), and the Science and Technology Major Program of Gansu Province of China (22ZD6FA006, 23ZDFA015).

Abstract
Due to their enhanced metabolic stability, C-glycosides are valuable structural motifs in bioactive natural products and pharmaceuticals. However, direct C-glycosylation of native saccharides remains a significant challenge due to the inert nature of the C–OH bond and the inherent selectivity issues arising from multiple hydroxy groups. In this Synpacts article, we highlight our recent development of a titanium-catalyzed radical C-glycosylation strategy that enables selective C–OH bond activation without prefunctionalization. By leveraging a Cp*TiCl₃/Zn system, this method generates glycosyl radicals under mild conditions, facilitating stereoselective C-glycosylation with electron-deficient alkenes. The approach exhibits a broad substrate scope that includes monosaccharides, disaccharides, and complex bioactive molecules, offering significant potential utility in glycodrug discovery. Radical stabilization and stereoelectronic effects drive the observed axial selectivity (>20:1). This work establishes a powerful and practical platform for C-glycoside synthesis, addressing long-standing challenges in carbohydrate functionalization and opening new avenues for radical-mediated glycosylation strategies.
Publikationsverlauf
Eingereicht: 03. März 2025
Angenommen nach Revision: 01. April 2025
Accepted Manuscript online:
01. April 2025
Artikel online veröffentlicht:
09. Mai 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Gantt RW, Peltier-Pain P, Thorson JS. Nat. Prod. Rep. 2011; 28: 1811
- 2a Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
- 2b Ghosh T, Nokami T. Carbohydr. Res. 2022; 522: 108677
- 2c Jiang Y, Zhang Y, Lee BC, Koh MJ. Angew. Chem. Int. Ed. 2023; 62: e202305138
- 2d Shang W, Niu D. Acc. Chem. Res. 2023; 56: 2473
- 2e Li J, Jiang X. Synlett
- 3 Xie H, Wang S, Shu X.-Z. J. Am. Chem. Soc. 2024; 146: 32269
- 4a Pang X, Shu X.-Z. Chin. J. Chem. 2023; 41: 1637
- 4b Gansäuer A, Fan C.-A, Keller F, Keil J. J. Am. Chem. Soc. 2007; 129: 3484
- 4c Diéguez HR, López A, Domingo V, Arteaga JF, Dobado JA, Herrador MM, Quílez del Moral JF, Barrero AF. J. Am. Chem. Soc. 2010; 132: 254
- 4d Wu X, Hao W, Ye K.-Y, Jiang B, Pombar G, Song Z, Lin S. J. Am. Chem. Soc. 2018; 140: 14836
- 4e Jiang Y, Wang Q, Zhang X, Koh MJ. Chem 2021; 7: 3377
- 4f Suga T, Takahashi Y, Miki C, Ukaji Y. Angew. Chem. Int. Ed. 2022; 61: e202112533
- 5a Xie H, Guo J, Wang Y.-Q, Wang K, Guo P, Su P.-F, Wang X, Shu X.-Z. J. Am. Chem. Soc. 2020; 142: 16787
- 5b Xie H, Wang S, Wang Y, Guo P, Shu X.-Z. ACS Catal. 2022; 12: 1018
- 6a Dupuis J, Giese B, Hartung J, Leising M, Korth HG, Sustmann R. J. Am. Chem. Soc. 1985; 107: 4332
- 6b SanMartin R, Tavassoli B, Walsh KE, Walter DS, Gallagher T. Org. Lett. 2000; 2: 4051
- 6c Miquel N, Doisneau G, Beau J.-M. Angew. Chem. Int. Ed. 2000; 39: 4111
- 6d Gong H, Sinisi R, Gagné MR. J. Am. Chem. Soc. 2007; 129: 1908
- 6e Andrews RS, Becker JJ, Gagné MR. Angew. Chem. Int. Ed. 2010; 49: 7274
- 6f Badir SO, Dumoulin A, Matsui JK, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 6610
- 6g Ji P, Zhang Y, Wei Y, Huang H, Hu W, Mariano PA, Wang W. Org. Lett. 2019; 21: 3086
- 6h Kiya N, Hidaka Y, Usui K, Hirai G. Org. Lett. 2019; 21: 1588
- 6i Zhu F, Zhang S.-q, Chen Z, Rui J, Hong X, Walczak MA. J. Am. Chem. Soc. 2020; 142: 11102
- 6j Fujino H, Fukuda T, Nagatomo M, Inoue M. J. Am. Chem. Soc. 2020; 142: 13227
- 6k Shang W, Su S.-N, Shi R, Mou Z.-D, Yu G.-Q, Zhang X, Niu D. Angew. Chem. Int. Ed. 2021; 60: 385
- 6l Wang Q, Lee BC, Tan TJ, Jiang Y, Ser WH, Koh MJ. Nat. Synth. 2022; 1: 967
- 6m Li J, Jiang X. Chin. J. Chem. 2023; 41: 2843
- 6n Dang Q.-D, Deng Y.-H, Sun T.-Y, Zhang Y, Li J, Zhang X, Wu Y.-D, Niu D. Nature 2024; 632: 313
- 7 For an attractive alternative, see: Jiang Y, Wei Y, Zhou Q.-Y, Sun G.-Q, Fu X.-P, Levin N, Zhang Y, Liu W.-Q, Song N, Mohammed S, Davis BG, Koh MJ. Nature 2024; 631: 319
- 8 Rodriques Borges MR, Balaban R. deC. J. Biotechnol. 2014; 192: 42
- 9 Giese B, Dupuis J. Tetrahedron Lett. 1984; 25: 1349
- 10 Zhang W, Kim D, Philip E, Miyan Z, Barykina I, Schmidt B, Stein H. Clin. Drug Invest. 2013; 33: 263
- 11 Negri L, Lattanzi R, Tabacco F, Scolaro B, Rocchi R. Br. J. Pharmacol. 1998; 124: 1516