Subscribe to RSS
DOI: 10.1055/a-2566-7550
Ligand-Promoted Palladium(II)-Catalyzed ortho-Hydroxylation of Masked Benzyl Alcohols
This work was supported by the National Natural Science Foundation of China (NSFC) (Grants Nos. 21772092 and 22075144).

Abstract
A PdII-catalyzed ortho-C(sp²)–H hydroxylation of benzyl alcohols using an oxime ether as a monodentate directing group was developed. An N-acetylglycine ligand, in facilitating the cleavage of a C–H bond, is crucial to the reaction. The reaction might involve the formation of hydroxyl radicals generated from Oxone, and a six-membered exo-palladacycle intermediate is proposed. Various substituents on the phenyl ring were tolerated in the reaction. A gram-scale reaction and directing-group removal were also performed, demonstrating the applicability of the reaction in syntheses of salicyl alcohols.
Key words
C(sp2)–H hydroxylation - palladium-catalysis - benzylic alcohols - oxime ethers - phenolic compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2566-7550.
- Supporting Information
Publication History
Received: 21 February 2025
Accepted after revision: 25 March 2025
Accepted Manuscript online:
25 March 2025
Article published online:
09 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 1b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 1c Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
- 1d Sasmal S, Dutta U, Lahiri GK, Maiti D. Chem. Lett. 2020; 49: 1406
- 1e Zhang Q, Shi B.-F. Chem. Sci. 2021; 12: 841
- 1f Youn SW, Cho C.-G. Org. Biomol. Chem. 2021; 19: 5028
- 1g Ha H, Lee J, Park MH, Jung B, Kim M. Bull. Korean Chem. Soc. 2020; 41: 582
- 2a Zhang H, Hu R.-B, Zhang X.-Y, Li S.-X, Yang S.-D. Chem. Commun. 2014; 50: 4686
- 2b Rastogi SK, Medellin DC, Kornienko A. Org. Biomol. Chem. 2014; 12: 410
- 2c Reynolds WR, Liu PM, Kociok-Köhn G, Frost CG. Synlett 2013; 24: 2687
- 2d Ding Q, Ji H, Nie Z, Yang Q, Peng Y. J. Organomet. Chem. 2013; 739: 33
- 2e Iqbal Z, Joshi A, De S R. Adv. Synth. Catal. 2020; 362: 5301
- 3 Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 14654
- 4a Li Z, Wang Z, Chekshin N, Qian S, Qiao JX, Cheng PT, Yeung K.-S, Ewing WR, Yu J.-Q. Science 2021; 372: 1452
- 4b Li Z, Park HS, Qiao JX, Yeung K.-S, Yu J.-Q. J. Am. Chem. Soc. 2022; 144: 18109
- 5a Kim SH, Lee HS, Kim SH, Kim JN. Tetrahedron Lett. 2008; 49: 5863
- 5b Shah SS, Paul A, Bera M, Venkatesh Y, Singh ND. P. Org. Lett. 2018; 20: 5533
- 5c Das P, Saha D, Saha D, Guin J. ACS Catal. 2016; 6: 6050
- 6 Liang Y.-F, Wang X, Yuan Y, Liang Y, Li X, Jiao N. ACS Catal. 2015; 5: 6148
- 7a Shan G, Yang X, Ma L, Rao Y. Angew. Chem. 2012; 124: 13247
- 7b Mo F, Trzepkowski LJ, Dong G. Angew. Chem. 2012; 124: 13252
- 7c Choy PY, Kwong FY. Org. Lett. 2013; 15: 270
- 8 Shan G, Yang X, Ma L, Rao Y. Angew. Chem. Int. Ed. 2012; 51: 13070
- 9a Dai C, Han Y, Liu L, Huang Z.-B, Shi D.-Q, Zhao Y. Org. Chem. Front. 2020; 7: 1703
- 9b Chen X.-Y, Ozturk S, Sorensen EJ. Org. Lett. 2017; 19: 6280
- 9c Andrade-Sampedro P, Matxain JM, Correa A. Adv. Synth. Catal. 2022; 364: 2072
- 9d Sun S.-Z, Shang M, Xu H, Cheng T.-J, Li M.-H, Dai H.-X. Chem. Commun. 2020; 56: 1444
- 10a Guo K, Chen X, Zhang J, Zhao Y. Chem. Eur. J. 2015; 21: 17474
- 10b Guo K, Chen X, Guan M, Zhao Y. Org. Lett. 2015; 17: 1802
- 10c Shao L.-Y, Li C, Guo Y, Yu K.-K, Zhao F.-Y, Qiao W.-L, Liu H.-W, Liao D.-H, Ji Y.-F. RSC Adv. 2016; 6: 78875
- 10d Shao L.-Y, Xu Z, Wang C.-Y, Fu X.-P, Chen M.-M, Liua H.-W, Ji Y.-F. Org. Biomol. Chem. 2018; 16: 6284
- 10e Mao Y.-J, Lou S.-J, Hao H.-Y, Xu D.-Q. Angew. Chem. Int. Ed. 2018; 57: 14085
- 10f Ren Z, Schulz JE, Dong G. Org. Lett. 2015; 17: 2696
- 11a Li J, Hu Y, Zhang D, Liu Q, Dong Y, Liu H. Adv. Synth. Catal. 2017; 359: 710
- 11b Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY. Chem. Rev. 2017; 117: 13039
- 11c Desai LV, Malik HA, Sanford MS. Org. Lett. 2006; 8: 1141
- 11d Jing K, Cuia P.-C, Wang G.-W. Chem. Commun. 2019; 55: 12551
- 11e Liu Y, Tian Y, Su K, Guo X, Chen B. Org. Biomol. Chem. 2020; 18: 3823
- 11f Li J, Jiang C. Org. Lett. 2021; 23: 5359
- 11g Nie J.-J, Wang Z.-X. J. Org. Chem. 2024; 89: 5764
- 12a Tyman JH. P. Synthetic and Natural Phenols . Elsevier; Amsterdam: 1996
- 12b Modern Drug Synthesis . Li JJ, Johnson DS. Wiley; 2010
- 12c Ball DI, Brittain RT, Coleman RA, Denyer LH, Jack D, Johnson M, Lunts LH. C, Nials AT, Sheldrick KE, Skidmore IF. Br. J. Pharmacol. 1991; 104: 665
- 12d Xu Z, Rong M, Ni S, Meng Q, Wu X, Liu H, Yang L. ACS Appl. Polym. Mater. 2023; 5: 8315
- 12e Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 13a Knight BJ, Rothbaum JO, Ferreira EM. Chem. Sci. 2016; 7: 1982
- 13b Wang D.-H, Engle KM, Shi B.-F, Yu J.-Q. Science 2010; 327: 315
- 13c Chen J, Xu J, Zhou Y, Xie S, Gao F, Xu X, Xu X, Jin Z. Org. Lett. 2019; 21: 7928
- 14a Li Y.-H, Ouyang Y, Chekshin N, Yu J.-Q. ACS Catal. 2022; 12: 10581
- 14b Hoque ME, Yu J.-Q. Angew. Chem. Int. Ed. 2023; 62: e202312331
- 15
Baraldi PG,
Barco A,
Benetti S,
Manfredini S,
Simoni D.
Synthesis 1987; 276
- 16 Dong J, Liu P, Sun P. J. Org. Chem. 2015; 80: 2925
- 17a Antoniou MG, de la Cruz AA, Dionysiou DD. Appl. Catal., B 2010; 96: 290
- 17b Zhang M.-Z, Ji P.-Y, Liu Y.-F, Guo C.-C. J. Org. Chem. 2015; 80: 10777
- 17c Meng Y.-N, Kang Q.-Q, Cao T.-T, Song S.-Z, Ge G.-P, Li Q, Wei W.-T. ACS Sustainable Chem. Eng. 2019; 7: 18738
- 17d Goulart HA, Bartz RH, Peglow TJ, Barcellos AM, Cervo R, Cargnelutti R, Jacob RG, Lenardão EJ, Perin G. J. Org. Chem. 2022; 87: 4273
- 17e Wei G, Zhang J, Wang H, Chen Z, Wu X.-F. Org. Biomol. Chem. 2023; 21: 284
- 17f Bartz RH, Silva KB, Peglow TJ, Barcellos AM, Jacob RG, Lenardão EJ, Perin G. Org. Biomol. Chem. 2022; 20: 8952
- 18
Acetone O-(2-Bromo-6-hydroxybenzyl)oxime (3c); Typical Procedure
A 15 mL reaction tube equipped with a magnetic stirrer bar was charged with Oxone
(0.5 mmol, 5.0 equiv), NaF (0.1 mmol, 1 equiv), Pd(OPiv)2 (0.01 mmol, 10 mol %), and ligand L1 (0.02 mmol, 20 mol %). A solution of 1c (0.1 mmol, 1.0 equiv) in DCM (1.0 mL) was added and the tube was sealed and heated
at 100 °C for 24 h. The mixture was then cooled to r.t., filtered through a silica
gel plug, and concentrated in vacuo. The crude product was purified by chromatography
[silica gel, hexanes–EtOAc (10:1)] to give a colorless oil; yield: 63%.
1H NMR (500 MHz, CDCl3): δ = 7.14 (dd, J = 8.1, 1.3 Hz, 1 H), 7.08 (t, J = 8.0 Hz, 1 H), 6.92 (dd, J = 8.0, 1.3 Hz, 1 H), 5.25 (s, 2 H), 1.91 (d, J = 9.4 Hz, 6 H). 13C NMR (126 MHz, CDCl3): δ = 158.3, 156.9, 131.1, 125.8, 125.0, 124.6, 117.5, 71.3, 22.1, 15.8. HRMS (ESI-TOF):
m/z [M + H]+ calcd for C10H13BrNO2: 258.01293; found: 258.01296.
For reviews, see:
For selected recent reports, see:
For reviews, see:
For selected recent reports, see: