RSS-Feed abonnieren
DOI: 10.1055/a-2547-8990
A Minireview on the Morpholine-Ring-Containing U.S. FDA Approved Drugs: A Medicinal-Chemistry-Based Analysis from 2013 to 2023

Abstract
Heterocyclic scaffolds, especially oxazines, constitute a significant component of clinically pertinent pharmaceuticals. Morpholine enhances the solubility, bioavailability, and metabolic stability of drug molecules because of its structural feature that gives optimum basicity (pK a = ca. 8.7), hydrogen bonding, and an electron-deficient ring system. Apart from structural features, incorporating morpholine ring systems in drug molecules improved their pharmacokinetic profiles also. It provides optimum lipid solubility as well as aqueous solubility. As a bioisosteric replacement unit for piperazine, piperidine, etc., the morpholine ring provides optimum basicity and lipophilicity. We have examined U.S. FDA approved small-molecule drugs (2012–2023) incorporating morpholine as core ring structures. The analysis identified 14 drugs approved in the past decade that contain morpholine ring systems, with 50% classified as anticancer agents. The CYP3A4 enzyme was identified as the main driver for the metabolism of these drugs, with the majority being excreted via feces. Three morpholine-containing drugs were identified as possessing chiral centers, taking into account stereochemical aspects. In addition to covering drugs with morpholine rings, the perspective offers a comprehensive analysis utilizing molecular descriptors, chemical space parameters, and commentary on these medications’ pharmacokinetic and pharmacodynamic aspects. This enhances the article’s medicinal chemistry dimension and renders it a valuable resource for the medicinal and allied science community.
1 Introduction
2 Insights towards the Chemistry of Morpholine
3 Synthetic Strategies to Develop Morpholine Derivatives
4 Implication of Morpholine in Improvising the Pharmacokinetics and Efficacy of Pharmaceutical Drugs: Case Studies
5 Comparative Analysis of the Pharmacological Class of the Approved Drugs Possessing Morpholine System
6 Delving Deeper into the Approved Drugs Bearing the Morpholine-Based Core Systems
7 Analysis and Conclusion
8 Summary
Keywords
heterocycles - morpholine - drug discovery - U.S. FDA approved - chemical space - molecular descriptors - chemical analysis - metabolismPublikationsverlauf
Eingereicht: 21. Januar 2025
Angenommen: 27. Februar 2025
Accepted Manuscript online:
27. Februar 2025
Artikel online veröffentlicht:
22. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Qadir T, Amin A, Sharma PK, Jeelani I, Abe H. Open J. Med. Chem. 2022; 16: e187410452202280
- 2 Mahajan ND, Jain N. Nat. Vol. Essent. Oil 2021; 13223
- 3 Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
- 4 Karthikeyan S, Grishina M, Kandasamy S, Mangaiyarkarasi R, Ramamoorthi A, Chinnathambi S, Pandian GN, John Kennedy L. J. Biomol. Struct. Dyn. 2023; 41: 14599
- 5 Kumar N, Goel N. Anti-Cancer Agents Med. Chem. 2022; 22: 3196
- 6 Zinad DS, Mahal A, Mohapatra RK, Sarangi AK, Pratama MR. F. Chem. Biol. Drug Des. 2020; 95: 16
- 7 Yan L.-H, Li X, Wang B.-G. Nat. Prod. Rep. 2023; 40: 1874
- 8 Majireck MM, Bennett JM. Compr. Heterocycl. Chem. IV 2021; 8: 283
- 9 Asif M, Imran M. Mini-Rev. Org. Chem. 2022; 19: 513
- 10 Kourounakis AP, Xanthopoulos D, Tzara A. Med. Res. Rev. 2020; 40: 709
- 11 Heiran R, Sepehri S, Jarrahpour A, Digiorgio C, Douafer H, Brunel JM, Gholami A, Riazimontazer E, Turos E. Bioorg. Chem. 2020; 102: 104091
- 12 Sakthikumar K, Isamura BK, Krause RW. M. RSC Med. Chem. 2023; 14: 1667
- 13 Zolotareva D, Zazybin A, Dauletbakov A, Belyankova Y, Giner Parache B, Tursynbek S, Seilkhanov T, Kairullinova A. Molecules 2024; 29: 3043
- 14 Acquavia MA, Bonomo MG, Bianco G, Salzano G, Gaeta C, Iannece P, Di Capua A, Giuzio F, Saturnino C. J. Pharm. Biomed. Anal. 2024; 246: 116202
- 15 Lenci E, Calugi L, Trabocchi A. ACS Chem. Neurosci. 2021; 12: 378
- 16 Dwivedi AR, Kumar V, Prashar V, Verma A, Kumar N, Parkash J, Kumar V. RSC Med. Chem. 2022; 13: 599
- 17 Aktaş A, Taslimi P, Bal S, Celepci DB, Gök Y, Taskin-Tok T, Aygün M, Gülçin İ. Polyhedron 2024; 257: 117016
- 18 Arsenie LV, Ladmiral V, Lacroix-Desmazes P, Catrouillet S. Eur. Polym. J. 2023; 200: 112490
- 19 Mazari SA, Abro R, Bhutto AW, Saeed IM, Ali BS, Jan BM, Ghalib L, Ahmed M, Mubarak N. J. Environ. Chem. Eng. 2020; 8: 103814
- 20 Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discov. 2018; 17: 709
- 21 Hechelski M, Waterlot C, Dufrénoy P, Louvel B, Daïch A, Ghinet A. Green Chem. Lett. Rev. 2021; 14: 15
- 22 Kourounakis AP, Xanthopoulos D, Tzara A. Med. Res. Rev. 2020; 40: 709
- 23 Eom SY, Lee YR, Park SM, Kwon CH. Phys. Chem. Chem. Phys. 2022; 24: 28477
- 24 Park SM, Kwon CH. J. Phys. Chem. Lett. 2023; 14: 9472
- 25 Altarawneh M, Dlugogorski BZ. J. Phys. Chem. A 2012; 116: 7703
- 26 Rupak K, Vulichi SR, Suman K. Int. J. Chem. Sci. 2016; 14: 1777
- 27 Degorce SL, Bodnarchuk MS, Cumming IA, Scott JS. J. Med. Chem. 2018; 61: 8934
- 28 Masoud MS, Ali AE, Elasala GS, Elwardany RE. J. Mol. Struct. 2019; 1175: 648
- 29 Liao Y.-F, Zhou M.-H, Zhang Y, Peng Y.-Y, Jian J.-X, Lu F, Tong Q.-X. J. Mol. Liq. 2021; 337: 116577
- 30 Weidner JP, Block SS. J. Med. Chem. 1967; 10: 1167
- 31 Pospelov EV, Sukhorukov AY. Int. J. Mol. Sci. 2023; 24: 11794
- 32 Burton TF, Garisoain Z, Chaix C, Aassine J, Virapin E, Voronova A, Pinaud J, Giani O. ACS Omega 2024; 9: 28583
- 33 Patil P, Madhavachary R, Kurpiewska K, Kalinowska-Tłuścik J, Dömling A. Org. Lett. 2017; 19 642
- 34 Sun H, Huang B, Lin R, Yang C, Xia W. Beilstein J. Org. Chem. 2015; 11: 524
- 35 Zhou J, Yeung Y.-Y. J. Org. Chem. 2014; 79: 4644
- 36 Jackl MK, Legnani L, Morandi B, Bode JW. Org. Lett. 2017; 19: 4696
- 37 Biberger T, Makai S, Lian Z, Morandi B. Angew. Chem. Int. Ed. 2018; 57: 6940
- 38 Gao R, Li L, Xie C, Diao X, Zhong D, Chen X. Drug Metab. Dispos. 2012; 40: 556
- 39 El-Damasy AK, Kim HJ, Park JW, Nam Y, Hur W, Bang E.-K, Keum G. J. Enzyme Inhib. Med. Chem. 2023; 38: 2228515
- 40 Tanaka R, Haramura M, Tanaka A, Hirayama N. Anal. Sci.: X-Ray Struct. Anal. Online 2004; 20: x173
- 41 Haria M, Bryson HM. Drugs 1995; 49: 103
- 42 Corey EJ, Wu Y.-J. Molecules Engineered Against Oncogenic Proteins and Cancer: Discovery, Design, and Development. Wiley; Hoboken, NJ: 2023
- 43 Nekardová M. Disserstation. Charles University; Prag: 2020
- 44 Prikhodko VA, Sysoev YI, Okovityi SV. Pharmacy Formulas 2020; 2: 16
- 45 Skoulikas M. Master’s Thesis. University of Huddersfield; UK: 2020
- 46 Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH. Cancer Res. 2002; 62: 5749
- 47 Testa B, Mayer JM. Hydrolysis in Drug and Prodrug Metabolism. John Wiley & Sons; Hoboken, NJ: 2003
- 48 Papenbrock J, Schmidt A. Eur. J. Biochem. 2000; 267: 5571
- 49 Knox C, Wilson M, Klinger CM, Franklin M, Oler E, Wilson A, Pon A, Cox J, Chin NE, Strawbridge SA. Nucleic Acids Res. 2024; 52: D1265
- 50 Thway K, Jones RL, Noujaim J, Fisher C. Adv. Anat. Pathol. 2016; 23: 41
- 51 Attwood MM, Fabbro D, Sokolov AV, Knapp S, Schiöth HB. Nat. Rev. Drug Discovery 2021; 20: 839
- 52 Ferguson FM, Gray NS. Nat. Rev. Drug Discovery 2018; 17: 353
- 53 Heo Y.-A. Drugs 2018; 78: 693
- 54 McKeage K. Drugs 2015; 75: 687
- 55 Markham A. Drugs 2018; 78: 959
- 56 Siegel JA, Korgavkar K, Weinstock MA. Br. J. Dermatol. 2017; 177: 350
- 57 Pérez-Molina JA, Molina I. Lancet 2018; 391: 82
- 58 Murray RJ. Nifurtimox. In Kucers' The Use of Antibiotics. Grayson L, Cosgrove S, Crowe S, Hope W, McCarthy J, Mills J, Mouton JW, Paterson D. CRC Press; Boca Raton, FL: 2017: 3211-3221
- 59 Edinoff AN, Akuly HA, Wagner JH, Boudreaux MA, Kaplan LA, Yusuf S, Neuchat EE, Cornett EM, Boyer AG, Kaye AM. Front. Psychiatry 2021; 12: 789982
- 60 Gibb A, Yang LP. H. Drugs 2013; 73: 1841