Synlett
DOI: 10.1055/a-2547-8910
letter
14th EuCheMS Organic Division Young Investigator Workshop

Mechanochemically Driven Radical Nitration of Electron-Rich ortho and para Di- and Trialkoxyarenes Using Iron(III) Nitrate

Samuel Andrejčák
,
Peter Dudáš
,
Michal Májek
This work was funded by the European Union, NextGenerationEU through the Recovery and Resilience Plan for Slovakia (Project No. 09I01-03-V04-00018) and by the European Research Council (ERC), CAPELE (101078608). The views and opinions expressed herein are those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.


Abstract

This study introduces a sustainable mechanochemical approach for the nitration of electron-rich ortho and para di- and trialkoxyarenes using iron(III) nitrate nonahydrate (Fe(NO3)3·9H2O) as a source of nitro radicals. Conventional nitration methods require harsh conditions and hazardous reagents, limiting their application. Herein, mechanochemical activation offers a rapid and efficient alternative with minimal solvent and a reduced reaction time. Screening identified Fe(NO3)3 as the most effective nitrating agent, with successful application with a variety of ortho and para di- and trialkoxyarenes while maintaining high regioselectivity. The scalability and environmental benefits of the method underscore its potential in organic synthesis, advancing a practical, green protocol for radical aromatic nitration.

Supporting Information



Publication History

Received: 15 December 2024

Accepted after revision: 27 February 2025

Accepted Manuscript online:
27 February 2025

Article published online:
09 April 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Hoggett JG, Moodie RB, Penton JR, Schofield K. Nitration and Aromatic Reactivity . Cambridge University Press; Cambridge: 1971
  • 2 Nepali K, Lee H.-Y, Liou J.-P. J. Med. Chem. 2019; 62: 2851
  • 3 Kannigadu C, N’Da DD. Curr. Pharm. Des. 2020; 26: 4658
  • 4 Zlotin SG, Dalinger IL, Makhova NN, Tartakovsky VA. Russ. Chem. Rev. 2020; 89: 1
  • 5 Liu J. Nitrate Esters Chemistry and Technology . Springer Nature; Singapore: 2019
  • 6 Parry R, Nishino S, Spain J. Nat. Prod. Rep. 2010; 28: 152
  • 7 Ju K.-S, Parales RE. Microbiol. Mol. Biol. Rev. 2010; 74: 250
  • 8 Topchiev AV. Nitration of Hydrocarbons and Other Organic Compounds. Pergamon Press; London: 2013
  • 9 Weaver WM. Introduction of the Nitro Group Into Aromatic Systems. In The Chemistry of the Nitro and Nitroso Groups. Feuer H. John Wiley & Sons; New York: 1970
  • 10 Qian Y.-E, Zheng L, Xiang H.-Y, Yang H. Org. Biomol. Chem. 2021; 19: 4835
  • 11 Driver TG, Vu V. Synthesis of Nitroso, Nitro, and Related Compounds. In Reference Module in Chemistry Molecular Sciences and Chemical Engineering [Online]. Elsevier; Amsterdam: 2023
  • 12 Patel SS, Patel DB, Patel HD. ChemistrySelect 2021; 6: 1337
  • 13 Zarei M, Noroozizadeh E, Moosavi-Zare AR, Zolfigol MA. J. Org. Chem. 2018; 83: 3645
  • 14 Yan G, Yang M. Org. Biomol. Chem. 2013; 11: 2554
  • 15 Galabov B, Nalbantova D, von Schleyer PR, Schaefer HF. I. Acc. Chem. Res. 2016; 49: 1191
  • 16 Huang J, Ding F, Rojsitthisak P, He F.-S, Wu J. Org. Chem. Front. 2020; 7: 2873
  • 17 Plasse KM, Mooney TR, Mastyugin M, Costa M, Török B. Front. Chem. 2024; 12: 1400445
  • 18 Patra S, Mosiagin I, Giri R, Katayev D. Synthesis 2022; 54: 3432
  • 19 Li W.-P, Cheng G, Li S.-Y, Lin C.-Z, Guan X.-Y, Bing D.-X, Cao J, Zhu D, Deng Q.-H. J. Org. Chem. 2022; 87: 3834
  • 20 Yang T, Li X, Deng S, Qi X, Cong H, Cheng H.-G, Shi L, Zhou Q, Zhuang L. JACS Au 2022; 2: 2152
  • 21 Zhang K, Jelier B, Passera A, Jeschke G, Katayev D. Chem. Eur. J. 2019; 25: 12929
  • 22 Song S.-Z, Dong Y, Ge G.-P, Li Q, Wei W.-T. Synthesis 2020; 52: 796
  • 23 Murai M, Nishinaka N, Kimura M, Takai K. J. Org. Chem. 2019; 84: 5667
  • 24 Maity S, Manna S, Rana S, Naveen T, Mallick A, Maiti D. J. Am. Chem. Soc. 2013; 135: 3355
  • 25 Song L.-R, Fan Z, Zhang A. Org. Biomol. Chem. 2019; 17: 1351
  • 26 Blum SP, Nickel C, Schäffer L, Karakaya T, Waldvogel SR. ChemSusChem 2021; 14: 4936
  • 27 Patra S, Mosiagin I, Giri R, Nauser T, Katayev D. Angew. Chem. Int. Ed. 2023; 62: e202300533 Angew. Chem., 2023, 135, e202300533
  • 28 Fan X, Zhao Y, Liu L, Wang H. Chin. J. Chem. 2023; 41: 1589
  • 29 Long T, Liu L, Tao Y, Zhang W, Quan J, Zheng J, Hegemann JD, Uesugi M, Yao W, Tian H, Wang H. Angew. Chem. Int. Ed. 2021; 60: 13414 ; Angew. Chem., 2021, 133, 13526
  • 30 Kulkarni AA. Beilstein J. Org. Chem. 2014; 10: 405
  • 31 Gomollón-Bel F. Chem. Int. 2019; 41: 12
  • 32 Ardila-Fierro KJ, Hernández JG. ChemSusChem 2021; 14: 2145
  • 33 James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2011; 41: 413
  • 34 Andersen J, Mack J. Green Chem. 2018; 20: 1435
  • 35 Tan D, García F. Chem. Soc. Rev. 2019; 48: 2274
  • 36 Friščić T, Mottillo C, Titi HM. Angew. Chem. Int. Ed. 2020; 59: 1018 ; Angew. Chem., 2020, 132, 1030
  • 37 Do J.-L, Friščić T. Synlett 2017; 28: 2066
  • 38 Martinez V, Stolar T, Karadeniz B, Brekalo I, Užarević K. Nat. Rev. Chem. 2023; 7: 51
  • 39 Patra S, Nandasana BN, Valsamidou V, Katayev D. Adv. Sci. 2024; 11: 2402970
  • 40 Shao A, Li Y, Dong M, Wang Y, Zhao R, Zhang J, Chen S, Wu H. Tetrahedron 2024; 168: 134329
  • 41 Zheng Y, Hu Q.-Q, Huang Q, Xie Y. Org. Lett. 2024; 26: 3316
  • 42 Dwyer CL, Holzapfel CW. Tetrahedron 1998; 54: 7843
  • 43 Friščić T, Childs SL, Rizvi SA. A, Jones W. CrystEngComm 2009; 11: 418
  • 44 Ying P, Yu J, Su W. Adv. Synth. Catal. 2021; 363: 1246
  • 45 Maity S, Naveen T, Sharma U, Maiti D. Org. Lett. 2013; 15: 3384
  • 46 Sau S, Mal P. Chem. Commun. 2021; 57: 9228
  • 47 Andrejčák S, Kisszékelyi P, Májek M, Šebesta R. Eur. J. Org. Chem. 2023; 26: e202201399
  • 48 General Procedure A 1.5 mL stainless-steel milling jar was charged with the aromatic compound 1 (1.0 equiv), Fe(NO3)3·9H2O (1.1 equiv) and MeCN (0.3 μL/mg of solid reagents) as a liquid-assisted grinding agent, along with a 6 mm stainless-steel ball. In some cases, the addition of MeCN was unnecessary. The jar was sealed and subjected to ball milling in a shaker mill at a frequency of 30 Hz for 25 min (unless otherwise specified). After milling, the crude reaction mixture was transferred from the jar using dichloromethane, dried over MgSO4, and then filtered. The mixture was further filtered through a short pad of Celite and concentrated under reduced pressure. The product 2 was either isolated at this stage or further purified by silica gel column chromatography using a gradient of hexane and ethyl acetate as the eluent.
  • 49 1,4-Dimethoxy-2-nitrobenzene (2a) Yield: 92 mg (quant.); yellow solid; mp 70–72 °C. IR (ATR): 3081, 3033, 2984, 2953, 2851, 1629, 1577, 1524, 1496, 1466, 1353, 1272, 1220, 1190, 1159, 1081, 1038, 1015, 912, 875, 811, 764, 737 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.40 (d, J = 3.0 Hz, 1 H), 7.11 (dd, J = 9.1, 3.1 Hz, 1 H), 7.03 (d, J = 9.1 Hz, 1 H), 3.92 (s, 3 H), 3.82 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 152.8, 147.3, 139.5, 120.8, 115.1, 110.0, 57.0, 56.0. MS (EI): m/z = 183.0 [M+], 138.0, 107.0, 79.1, 77.1. The characterization data matched those reported in the literature (see Refs. 26 and 50).
  • 50 Jia F, Li A, Hu X. Org. Lett. 2023; 25: 4605