Subscribe to RSS
DOI: 10.1055/a-2526-0446
A One-Pot, Three-Component Synthesis of β,γ-Unsaturated α-Aminonitriles Using TMSCN as the Cyanide Source
We thank the Lanzhou Resources & Environment Voc-Tech University Key Talent Support Program (X2024ZD-02), the Gansu Province University Youth Doctoral Support Project (2023QB-022) and the Natural Science Foundation of Gansu Province (23JRRA655) for financial support.

We thank Prof. Zheng Li of Northwestern Normal University (China) for his support and celebrate his 60th birthday.
Abstract
An efficient method for synthesizing β,γ-unsaturated α-aminonitriles via a one-pot procedure using cinnamaldehydes, anilines and trimethylsilyl cyanide (TMSCN) as starting materials under catalyst-free conditions is reported. This one-pot, three-component reaction proceeds efficiently with a broad range of substrates and tolerates a wide variety of functional groups. Notably, the process features a simple work-up procedure and does not require transition-metal catalysts. Additionally, the reaction can be performed on gram scale without loss of efficiency.
Key words
α-aminonitriles - trimethylsilyl cyanide - cyanide source - catalyst-free - cinnamaldehydeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2526-0446.
- Supporting Information
Publication History
Received: 14 November 2024
Accepted after revision: 27 January 2025
Accepted Manuscript online:
27 January 2025
Article published online:
12 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Bhalla TC, Miura A, Wakamoto A, Ohba Y, Furuhashi K. Appl. Microbiol. Biotechnol. 1992; 37: 184
- 1b Duthaler RO. Tetrahedron 1994; 50: 1539
- 2a Matier WL, Owens DA, Comer WT, Deitchman D, Ferguson HC, Seidehamel RJ, Young JR. J. Med. Chem. 1973; 16: 901
- 2b Weinstok LM, Davis P, Handelsman B, Tull R. J. Org. Chem. 1967; 32: 2823
- 3a Lee CH, Francesco F, Angiolillo DJ. Expert Opin. Drug Metab. Toxicol. 2020; 16: 1079
- 3b Feldman PL, James MK, Brackeen MF, Bilotta JM, Schuster SV, Lahey AP, Lutz MW, Johnson MR, Leighton HJ. J. Med. Chem. 1991; 34: 2202
- 3c Tantry U, Singh S, Bliden K, Gurbel P, Ashley W. Expert Rev. Neurother. 2024; 24: 139
- 3d Fukuyama T, Yang L, Ajeck KL, Sachleben RA. J. Am. Chem. Soc. 1990; 112: 3712
- 3e Namba K, Shinada T, Teramoto T, Ohfune Y. J. Am. Chem. Soc. 2000; 122: 10708
- 4 Ramalingam B, Seayad AM, Li CZ, Garland M, Yoshinaga K, Wadamoto M, Nagata T, Chai CL. L. Adv. Synth. Catal. 2010; 352: 2153
- 6 Shah S, Singh B. Tetrahedron Lett. 2012; 53: 151
- 7 Nakamura S, Sato N, Sugimoto M, Toru T. Tetrahedron: Asymmetry 2004; 15: 1513
- 8a Vachal P, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 10012
- 8b Xie ZF, Li GL, Zhao G, Wang JD. Synthesis 2009; 2035
- 9a Pathare SP, Akamanchi KG. Tetrahedron Lett. 2012; 53: 871
- 9b Dekamin MG, Mokhtari Z. Tetrahedron 2012; 68: 922
- 9c Nasreen A. Tetrahedron Lett. 2013; 54: 3797
- 9d Saberi D, Cheraghi S, Mahdudi S, Akbari J, Heydari A. Tetrahedron Lett. 2013; 54: 6403
- 9e Yadav JS, Reddy BV. S, Eeshwaraiah B, Srinivas M. Tetrahedron 2004; 60: 1767
- 9f Yadav JS, Reddy BV. S, Eshwaraiah B, Srinivas M, Vishnumurthy P. New J. Chem. 2003; 27: 462
- 9g Enders D, Gottfried K, Raabe G. Adv. Synth. Catal. 2010; 352: 3147
- 9h Surendra K, Krishnaveni NS, Mahesh A, Rao KR. J. Org. Chem. 2006; 71: 2532
- 9i Kumar MA, Babu MF. S, Srinivasulu K, Kiran YB, Reddy CS. J. Mol. Catal. A: Chem. 2007; 265: 268
- 10a Kobayashi S, Ishitani H, Ueno M. Synlett 1997; 115
- 10b De SK, Gibbs RA. Synth. Commun. 2005; 35: 951
- 10c Paraskar S, Sudalai A. Tetrahedron Lett 2006; 47: 5759
- 10d Heydari A, Fatemi P, Alizadesh AA. Tetrahedron Lett. 1998; 39: 3049
- 10e De SK, Gibbs RA. Tetrahedron Lett. 2004; 45: 7407
- 10f De SK. J. Mol. Catal. A: Chem. 2005; 225: 169
- 10g De SK. Synth. Commun. 2005; 35: 653
- 10h Pasha MA, Nanjundaswamy HM, Jayashankara VP. Synth. Commun. 2007; 37: 4371
- 10i Banu BC, Dev SS, Hajri A. Tetrahedron 2002; 58: 2529
- 10j Shen ZL, Ji SJ, Loh TP. Tetrahedron 2008; 64: 8159
- 10k Majhi A, Kim SS, Kadam ST. Tetrahedron 2008; 64: 5509
- 10l Narasimhulu M, Reddy TS, Mahesh KC, Reddy SM, Reddy AV, Venkateswarlu Y. J. Mol. Catal. A: Chem. 2007; 264: 288
- 10m Royer L, De SK, Gibbs RA. Tetrahedron Lett. 2005; 46: 4595
- 10n Das B, Ramu R, Ravikanth B, Reddy KR. Synthesis 2006; 1419
- 11a Li Z, Ma Y, Xu J, Shi J, Cai H. Tetrahedron Lett. 2010; 51: 3922
- 11b Zhao Z, Li Z. J. Braz. Chem. Soc. 2011; 22: 148
- 11c Hu X, Ma Y, Li Z. J. Organomet. Chem. 2012; 705: 70
- 11d Li Z, Zhang Y, Wen F, Yin J, Zheng H, Li H, Yang J. J. Chem. Res. 2013; 37: 601
- 11e Li Z, Wen F, Yang J. Chin. J. Chem. 2014; 32: 1251
- 11f Zhang Y, Hu X, Li Z. Chem. Pap. 2015; 64: 596
- 11g Li Z, Wen F, Yang J. J. Chem. Sci. 2016; 128: 1849
- 11h Song G, Li Z. Eur. J. Org. Chem. 2018; 1326
- 11i Lu H, Li Z. Adv. Synth. Catal. 2019; 361: 4474
- 12 β,γ-Unsaturated α-Aminonitriles 3; General Procedure A reaction tube (15 mL) containing a magnetic stir bar was charged with cinnamaldehyde 1 (1.0 mmol), aniline 2 (1.0 mmol), TMSCN (1.2 mmol) and EtOH (5 mL) under air. The reaction mixture was stirred at room temperature for 24 h. Upon completion the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc as eluent) to give the target product 3.
- 13 (E)-4-Phenyl-2-(o-tolylamino)but-3-enenitrile (3b) 1H NMR (600 MHz, CDCl3): δ = 7.44 (d, J = 7.2 Hz, 2 H), 7.37 (t, J = 7.0 Hz, 2 H), 7.32 (t, J = 7.1 Hz, 1 H), 7.20 (t, J = 7.3 Hz, 1 H), 7.12 (d, J = 7.4 Hz, 1 H), 7.06 (dd, J = 15.9, 1.3 Hz, 1 H), 6.84 (t, J = 7.4 Hz, 1 H), 6.81 (d, J = 8.0 Hz, 1 H), 6.31 (dd, J = 15.9, 5.2 Hz, 1 H), 5.06 (dd, J = 5.2, 1.3 Hz, 1 H), 3.75 (s, 1 H), 2.18 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 142.5, 135.1, 135.0, 130.8, 129.0, 128.9, 127.4, 127.0, 123.7, 121.2, 120.0, 117.8, 111.7, 47.6, 17.5. HRMS (ESI): m/z [M – H]+ calcd for C17H15N2: 247.12407; found: 247.12410.