RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2025; 57(05): 978-990
DOI: 10.1055/a-2508-3355
DOI: 10.1055/a-2508-3355
paper
RNHSO2F as Reliable Azasulfene Precursors for the Construction of Sulfamates
The authors are thankful for the financial support from the State Grid Corporation of China through their Science and Technology Project (5200-202320132A-1-1-ZN).

Abstract
The utilization of NH-sulfamoyl fluorides (RNHSO2F) as reliable SuFEx synthons for the construction of various sulfamate esters is reported. By using potassium fluoride as base, we were able to convert RNHSO2F into azasulfene intermediates under mild conditions and guarantee their further efficient ligation with phenols and alcohols.
Keywords
SuFEx - NH-sulfamoyl fluorides - sulfamate esters - azasulfene intermediates - potassium fluorideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2508-3355.
- Supporting Information
Publikationsverlauf
Eingereicht: 29. November 2024
Angenommen nach Revision: 26. Dezember 2024
Accepted Manuscript online:
26. Dezember 2024
Artikel online veröffentlicht:
29. Januar 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Maryanoff BE, Nortey SO, Gardocki JF, Shank RP, Dodgson SP. J. Med. Chem. 1987; 30: 880
- 1b Winum JY, Scozzafava A, Montero JL, Supuran CT. Med. Res. Rev. 2005; 25: 186
- 1c Spillane W, Malaubier JB. Chem. Rev. 2014; 114: 2507
- 1d Thomas MP, Potter BV. J. Med. Chem. 2015; 58: 7634
- 1e Zaraei SO, Abduelkarem AR, Anbar HS, Kobeissi S, Mohammad M, Ossama A, El-Gamal MI. Eur. J. Med. Chem. 2019; 179: 257
- 2a Huie EM, Kirshenbaum MR, Trainor GL. J. Org. Chem. 1992; 57: 4569
- 2b Fettes KJ, Howard N, Hickman DT, Adah SA, Player MR, Torrence PF, Micklefield J. Chem. Commun. 2000; 765
- 2c Zengin Kurt B, Dhara D, El-Sagheer AH, Brown T. Org. Lett. 2024; 26: 4137
- 3a Weiß G, Schulze G. Justus Liebigs Ann. Chem. 1969; 729: 40
- 3b Burgess EM, Penton HR, Taylor EA. J. Org. Chem. 1973; 38: 26
- 3c Ingram LJ, Desoky A, Ali AM, Taylor SD. J. Org. Chem. 2009; 74: 6479
- 3d Blackburn JM, Short MA, Castanheiro T, Ayer SK, Muellers TD, Roizen JL. Org. Lett. 2017; 19: 6012
- 3e Sguazzin MA, Johnson JW, Magolan J. Org. Lett. 2021; 23: 3373
- 3f Wang H.-M, Xiong C.-D, Chen X.-Q, Hu C, Wang D.-Y. Org. Lett. 2021; 23: 2595
- 3g Sugisawa N, Nakabayashi K, Sugisawa H, Fuse S. Org. Lett. 2024; 26: 2739
- 4a Vandi A, Moeller T, Audrieth LF. J. Org. Chem. 1961; 26: 1136
- 4b Hansen NC, Palenius I, Jerslev B, Hatanaka A, Munch-Petersen J. Acta Chem. Scand. 1963; 17: 2141
- 4c Kloek JA, Leschinsky KL. J. Org. Chem. 1976; 41: 4028
- 5a Buncel E. Chem. Rev. 1970; 70: 323
- 5b Firth WC. J. Polym. Sci., Part B: Polym. Lett. 1972; 10: 637
- 5c Buncel E, Raoult A, Lancaster LA. J. Am. Chem. Soc. 1973; 95: 5964
- 5d Buncel E, Raoult A. J. Chem. Soc., Chem. Commun. 1973; 210b
- 6a Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
- 6b Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. Chem. Soc. Rev. 2019; 48: 4731
- 6c Serbetci D, Marraffa L, Natho P, Andresini M, Luisi R. Synthesis 2024; in press
- 6d Zeng D, Deng W.-P, Jiang X. Chem. Eur. J. 2023; 29: e202300536
- 6e Schnaider L, Tan S, Singh PR, Capuano F, Scott AJ, Hambley R, Lu L, Yang H, Wallace EJ, Jo H, DeGrado WF. J. Am. Chem. Soc. 2024; 146: 25047
- 7a Mahapatra S, Woroch CP, Butler TW, Carneiro SN, Kwan SC, Khasnavis SR, Gu J, Dutra JK, Vetelino BC, Bellenger J, Am Ende CW, Ball ND. Org. Lett. 2020; 22: 4389
- 7b Sousa ES. F. C, Doktor K, Michaudel Q. Org. Lett. 2021; 23: 5271
- 7c Huang K.-H, Morato NM, Feng Y, Cooks RG. Angew. Chem. Int. Ed. 2023; 62: e202300956
- 7d Dong J, Sharpless KB, Kwisnek L, Oakdale JS, Fokin VV. Angew. Chem. Int. Ed. 2014; 53: 9466
- 7e Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. Angew. Chem. Int. Ed. 2021; 60: 7397
- 7f Wang P, Lin L, Huang Y, Zhang H, Liao S. Angew. Chem. Int. Ed. 2024; 63: e202405944
- 8 Padma DK, Subrahmanya Bhat V, Vasudeva Murthy AR. J. Fluorine Chem. 1982; 20: 425
- 9 Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. Angew. Chem. Int. Ed. 2018; 57: 2605
- 10a Kulow RW, Wu JW, Kim C, Michaudel Q. Chem. Sci. 2020; 11: 7807
- 10b Zhao W, Zheng S, Zou J, Liang Y, Zhao C, Xu H. J. Agric. Food Chem. 2021; 69: 5798
- 10c Chrominski M, Ziemkiewicz K, Kowalska J, Jemielity J. Org. Lett. 2022; 24: 4977
- 10d Chattapadhyay D, Aydogan A, Doktor K, Maity A, Wu JW, Michaudel Q. ACS Catal. 2023; 13: 7263
- 10e Hou C, Liu Z, Gan L, Fan W, Huang L, Chen P, Huang Z, Liu G. J. Am. Chem. Soc. 2024; 146: 13536
- 11 Lin M, Luo J, Xie Y, Du G, Cai Z, Dai B, He L. ACS Catal. 2023; 13: 14503
- 12 Nagai T, Shingaki T, Inagaki M, Ohshima T. Bull. Chem. Soc. Jpn. 1979; 52: 1102
- 13a Atkins GM, Burgess EM. J. Am. Chem. Soc. 1967; 89: 2502
- 13b Atkins GM, Burgess EM. J. Am. Chem. Soc. 1972; 94: 6135
- 13c Rapp PB, Murai K, Ichiishi N, Leahy DK, Miller SJ. Org. Lett. 2020; 22: 168
- 14 CCDC 2377806 (1f), CCDC 2377807 (3j), CCDC 2377808 (3ag), CCDC 2377809 (5b) and CCDC 2377813 (6b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. Also see the Supporting Information.