Dtsch Med Wochenschr 2025; 150(10): 548-554
DOI: 10.1055/a-2500-0825
Dossier

Melanom-Screening

Melanoma prevention – to screen or not to screen?
Elisabeth V. Gössinger
,
Alina M. Müller
,
Alexander A. Navarini
,
Anne-Katharina Sonntag

Deutschland ist weltweit das einzige Land mit einem Hautkrebs-Screening für alle Personen ab 35 Jahren. Ob dieses tatsächlich die Hautkrebsmortalität der Allgemeinbevölkerung senkt, ist jedoch bisher nicht nachgewiesen, wie dieser Beitrag zeigt. Darüber hinaus stellt er neue bildgebende Verfahren und die Risikobewertung von Hautläsionen durch künstliche Intelligenz vor – Technologien, die zukünftig wohl eine große Rolle spielen werden.

Abstract

Melanoma is one of the most common cancers worldwide with a high mortality rate. However, the smaller the melanoma is when it is first diagnosed, the better the prognosis. Since skin melanomas can be detected relatively easy with the naked eye, systematic skin cancer screening could theoretically reduce melanoma mortality by diagnosing it as early as possible. Evaluations of skin cancer early detection programs show an increase in the incidence of detection of the skin cancer and especially thins melanomas, but so far, no evidence of a decrease in mortality. Current data on patient-related factors show that fewer men and people with lower socioeconomic status participate in skin cancer screening and knowledge about skin cancer-associated factors is low.

Based on the current study situation, it is therefore not possible to recommend or advise against skin cancer screening for the asymptomatic population. Screening is recommended for all people at increased risk: fair skin type according to Fitzpatrick I–II, under immunosuppression, more than 50 melanocytic nevi and history of dysplastic and/or large nevi, family history of melanoma, frequent severe sunburns in childhood. In addition, targeted educational campaigns among risk groups (men, people with low levels of education) are needed.

New imaging techniques such as 3D whole-body photography with additional computer-based, AI-assisted risk assessment of digital dermoscopic images, when integrated into clinical decision-making processes (as “augmented intelligence” – AI), clearly have the potential to improve skin cancer screening, particularly in high-risk and melanoma patients. In combination with human expertise, they can potentially offer a more effective and comprehensive approach to detecting and monitoring skin cancer. Randomized controlled studies must show to what extent this promising technique has proven itself in the clinic and is also suitable for other populations.

Kernaussagen
  • Deutschland ist weltweit das einzige Land mit geregeltem Hautkrebs-Screening.

  • Flächendeckendes Screening führt zur vermehrten Detektion von Melanomen in frühen Stadien, senkt jedoch bisher nicht nachweislich die Sterblichkeit.

  • Männer und Gruppen mit niedrigem sozioökonomischem Status nehmen seltener an Screening-Untersuchungen teil – gezielte Aufklärung ist erforderlich.

  • Ein allgemeines Hautkrebs-Screening für asymptomatische Personen kann anhand der aktuellen Datenalge derzeit weder empfohlen noch ausgeschlossen werden – Risikopatienten sollten jedoch gescreent werden.

  • Zur Überprüfung der Wirksamkeit eines flächendeckenden Hautkrebs-Screenings in der Allgemeinbevölkerung sind zukünftig randomisierte kontrollierte Studien notwendig.

  • Kommerzielle Smartphone-Apps zur Beurteilung von melanozytären Hautveränderungen führen häufig zu überhöhten Risikoeinschätzungen.

  • KI-gestützte 3D-Ganzkörperfotografie und digitale Dermatoskopie haben in Kombination mit menschlicher Expertise das Potenzial zur Verbesserung des Screenings, besonders für Hochrisikopatienten.



Publication History

Article published online:
22 April 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Welch HG, Mazer BL, Adamson AS. The rapid rise in cutaneous melanoma diagnoses. N Engl J Med 2021; 384: 72-79
  • 2 Garbe C, Amaral T, Peris K. et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics: Update 2022. Eur J Cancer 2022; 170: 236-255
  • 3 Lo SN, Williams GJ, Cust AE. et al. Risk of death due to melanoma and other causes in patients with thin cutaneous melanomas. JAMA Dermatol 2024;
  • 4 Datzmann T, Schoffer O, Meier F. et al. Are patients benefiting from participation in the German skin cancer screening programme? A large cohort study based on administrative data. Br J Dermatol 2022; 186: 69-77
  • 5 Breitbart EW, Waldmann A, Nolte S. et al. Systematic skin cancer screening in Northern Germany. J Am Acad Dermatol 2012; 66: 201-211
  • 6 Eisemann N, Waldmann A, Katalinic A. Incidence of melanoma and changes in stage-specific incidence after implementation of skin cancer screening in Schleswig-Holstein. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2014; 57: 77-83
  • 7 Baltus H, Hübner J, Garbe C. et al. Evaluation der Hautkrebsfrüherkennung in Deutschland – eine Mikrosimulation. J Dtsch Dermatol Ges 2025; 23: 19-28
  • 8 Schumann L, Eisemann N, Augustin J. et al. Association of early-stage incidence and mortality in malignant melanoma – a population-based ecological study. J Dtsch Dermatol Ges 2023; 21 (Suppl. 05) 33-40
  • 9 Hübner J, Baltus H, Eisemann N. et al. Evaluation der Hautkrebsfrüherkennung in Deutschland mit Krebsregisterdaten – Herausforderungen, Lösungen und aktuelle Trends. J Dtsch Dermatol Ges 2023; 21 (Suppl. 05) 13-21
  • 10 Garbe C, Augustin M, Augustin J. et al. Evaluation der Hautkrebsfrüherkennung in Deutschland – Teilnahme, Tumordetektion und Intervalltumoren auf Grundlage von GKV-Daten. J Dtsch Dermatol Ges 2023; 21 (Suppl. 05) 3-12
  • 11 Andrees V, Wolf S, Liebers J. et al. Welche Faktoren beeinflussen die Teilnahme am gesetzlichen Hautkrebsscreenings in Deutschland?. J Dtsch Dermatol Ges 2024; 22: 775-782
  • 12 Matsumoto M, Wack S, Weinstock MA. et al. Five-year outcomes of a melanoma screening initiative in a large health care system. JAMA Dermatol 2022; 158: 504-512
  • 13 Smith B, Matsumoto M, Wang H. et al. Melanoma detection in Alaska Native, American Indian, Asian, Black, Hispanic, and Pacific Islander patients in a large skin cancer screening initiative. JAMA Dermatol 2023; 159: 1004-1006
  • 14 Whiteman DC, Olsen CM, MacGregor S. et al. The effect of screening on melanoma incidence and biopsy rates. Br J Dermatol 2022; 187: 515-522
  • 15 Krensel M, Andrees V, Mohr N. et al. Costs of routine skin cancer screening in Germany: a claims data analysis. Clin Exp Dermatol 2021; 46: 842-850
  • 16 Garbe C, Büttner P, Weiss J. et al. Associated factors in the prevalence of more than 50 common melanocytic nevi, atypical melanocytic nevi, and actinic lentigines: multicenter case-control study of the Central Malignant Melanoma Registry of the German Dermatological Society. J Invest Dermatol 1994; 102: 700-705
  • 17 de Snoo FA, Kroon MW, Bergman W. et al. From sporadic atypical nevi to familial melanoma: risk analysis for melanoma in sporadic atypical nevus patients. J Am Acad Dermatol 2007; 56: 748-752
  • 18 Stefanaki C, Chardalias L, Soura E. et al. Paediatric melanoma. J Eur Acad Dermatol Venereol 2017; 31: 1604-1615
  • 19 Saginala K, Barsouk A, Aluru JS. et al. Epidemiology of Melanoma. Med Sci (Basel) 2021; 9: 63
  • 20 Tsao H, Olazagasti JM, Cordoro KM. et al. Early detection of melanoma: reviewing the ABCDEs. J Am Acad Dermatol 2015; 72: 717-723
  • 21 Gaudy-Marqueste C, Wazaefi Y, Bruneu Y. et al. Ugly duckling sign as a major factor of efficiency in melanoma detection. JAMA Dermatol 2017; 153: 279-284
  • 22 Young AT, Vora NB, Cortez J. et al. The role of technology in melanoma screening and diagnosis. Pigment Cell Melanoma Res 2021; 34: 288-300
  • 23 Dinnes J, Deeks JJ, Chuchu N. et al. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults. Cochrane Database Syst Rev 2018; 12: CD011902
  • 24 Haenssle HA, Fink C, Toberer F. et al. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann Oncol 2020; 31: 137-143
  • 25 Haenssle HA, Fink C, Schneiderbauer R. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 2018; 29: 1836-1842
  • 26 Cerminara SE, Cheng P, Kostner L. et al. Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening?. Eur J Cancer 2023; 190: 112954
  • 27 Goessinger EV, Cerminara SE, Mueller AM. et al. Consistency of convolutional neural networks in dermoscopic melanoma recognition: A prospective real-world study about the pitfalls of augmented intelligence. J Eur Acad Dermatol Venereol 2024; 38: 945-953
  • 28 Jahn AS, Navarini AA, Cerminara SE. et al. Over-detection of melanoma-suspect lesions by a CE-certified smartphone app: performance in comparison to dermatologists, 2D and 3D convolutional neural networks in a prospective data set of 1204 pigmented skin lesions involving patients’ perception. Cancers (Basel) 2022; 14: 3829
  • 29 Freeman K, Dinnes J, Chuchu N. et al. Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ 2020; 368: m127
  • 30 Hartman R, Tepedino K, Fung M. et al. Validation of a handheld elastic-scattering spectroscopy device on lesions suggestive of melanoma. J Dermatol Phys Assist 2022; 16: 51
  • 31 DermaSensor. DERM-SUCCESS Prospective Skin Cancer Validation Study (April 2024). Accessed February 17, 2025 at: https://www.dermasensor.com/wp-content/uploads/80–0015.1-Clinical-Evidence-Three-Studies-1.pdf
  • 32 Hartman RI, Trepanowski N, Chang MS. et al. Multicenter prospective blinded melanoma detection study with a handheld elastic scattering spectroscopy device. JAAD Int 2024; 15: 24-31
  • 33 Goessinger EV, Niederfeilner JC, Cerminara S. et al. Patient and dermatologists’ perspectives on augmented intelligence for melanoma screening: A prospective study. J Eur Acad Dermatol Venereol 2024; 38: 2240-2249