Subscribe to RSS
DOI: 10.1055/a-2463-5168
One-Pot, Three-Component Coupling Synthesis of [(Benzothiazol-2-ylamino)(aryl)methyl]isoquinolinols under Catalyst- and Solvent-Free Conditions
Alluhaibi, M. S. and Hawsawi, M. B. are grateful to the Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia, for their continuous support for this work. Gandhamsetty, N. is thankful for financial assistance from LNC PHARMARIX, Hyderabad, India.

Abstract
A one-pot, three-component coupling procedure has been developed for the synthesis of [(benzothiazol-2-ylamino)(aryl)methyl]isoquinolinols via the reaction of hydroxyisoquinolines, aryl/heteroaryl/aliphatic aldehydes with 2-aminobenzothiazoles under catalyst- and solvent-free conditions. The developed 2′-aminobenzothiazolomethylation procedure is suitable to execute even on a gram scale and has a broad scope. The 2′-aminobenzothiazolomethylated products (Betti bases) were formed through the initial nucleophilic C-attack of hydroxyisoquinolines on aldehydes to generate the ortho-quinone methide (o-QM) as an intermediate, followed by 1,4-aza-Michael addition of 2-aminobenzothiazoles. Betti bases have significance in medicinal chemistry due to their wide range of pharmacological applications and they are useful ligands and catalysts in asymmetric synthesis.
Key words
catalyst-free - solvent-free - aryl/heteroaryl/aliphatic aldehydes - three-component coupling - hydroxyisoquinolines - 2-aminobenzothiazoles - [(Benzothiazol-2-ylamino)(aryl)methyl]isoquinolinolsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2463-5168.
- Supporting Information
Publication History
Received: 29 September 2024
Accepted after revision: 07 November 2024
Accepted Manuscript online:
07 November 2024
Article published online:
06 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kim AN, Ngamnithiporn A, Du E, Stoltz BM. Chem. Rev. 2023; 123: 9447
- 1b Shang X.-F, Yang C.-J, Morris-Natschke SL, Li J.-C, Yin X.-D, Liu Y.-Q, Guo X, Peng J.-W, Goto M, Zhang J.-Y, Lee K.-H. Med. Res. Rev. 2020; 40: 2212
- 1c Chrzanowska M, Grajewska A, Rozwadowska MD. Chem. Rev. 2016; 116: 12369
- 1d Bentley KW. Nat. Prod. Rep. 2006; 23: 444
- 2a Wang D, Qin L, Jing C, Wang G, Zhou H, Deng P, Zhang S, Wang Y, Ding Y, Zhang Z, Wu Z, Liu Y. Bioorg. Chem. 2024; 145: 107252
- 2b Vijaykumar A, Manod M, Krishna RB, Mathew A, Mohan C. RSC Med. Chem. 2023; 14: 2509
- 2c Bhadra K, Kumar GS. Med. Res. Rev. 2011; 31: 821
- 2d Shergalis A, Xue D, Gharbia FZ, Driks H, Shrestha B, Tanweer A, Cromer K, Ljungman M, Neamati N. J. Med. Chem. 2020; 63: 10263
- 3a Mahadeviah C, Nagaraj PK, Pasha TY, Marathi P. Int. J. Pharm. Invest. 2024; 14: 1115 ; and related references are therein
- 3b Galán A, Moreno L, Párraga J, Serrano Á, Sanz MJ, Cortes D, Cabedo M. Bioorg. Med. Chem. 2013; 21: 3221
- 3c Balewski Ł, Sączewski F, Gdaniec M, Kornicka A, Cicha K, Jalińska A. Molecules 2019; 24: 4070
- 3d Nugraha RY. B, Faratisha IF. D, Mardhiyyah K, Ariel DG, Putri FF, Nafisatuzzamrudah Nafisatuzzamrudah, Winarsih S, Sardjono TW, Fitri LE. BioMed Res Int. 2020; 6135696
- 4a Haider K, Rehman S, Pathak A, Najmi AK, Yar MS. Arch. Pharm. 2021; 354: 2100246
- 4b Rouf A, Tanyeli C. Eur. J. Med. Chem. 2015; 97: 911
- 5a Erdogan M, Kilic B, Sagkan RI, Aksakal F, Ercetin T, Gulcan HO, Dogruer DS. Eur. J. Med. Chem. 2021; 212: 113124
- 5b Özkay ÜD, Kaya C, Çevik UA, Can ÖD. Molecules 2017; 22: 1490
- 6a Zhilitskaya LV, Yarosh NO. Chem. Heterocycl. Compd. 2021; 57: 369
- 6b Sairamana A, Cardosoe FC, Bispatc A, Lewise RJ, Dugganc PJ, Tuckd KL. Bioorg. Med. Chem. 2018; 26: 3046
- 6c Uremis N, Uremis MM, Tolun FI, Ceylan M, Doganer A, Kurt AH. Anticancer Res. 2017; 37: 6381
- 6d Singh M, Singh SK, Gangwar M, Nath G, Singh SK. RSC Adv. 2014; 4: 19013
- 6e Duggan PJ, Lewis RJ, Lok YP, Lumsden NG, Tuck KL, Yang A. Bioorg. Med. Chem. Lett. 2009; 19: 2763
- 6f Baell JB, Duggan PJ, Forsyth SA, Lewis RJ, Lok YP, Schroeder CI. Bioorg. Med. Chem. 2004; 12: 4025
- 6g Kalavagunta PK, Bagul PK, Jallapally A, Kantevari S, Banerjee SK, Ravirala R. Eur. J. Med. Chem. 2014; 83: 344
- 6h Jonckers TH. M, Rouan M.-C, Haché G, Schepens W, Hallenberger S, Baumeister J, Sasaki JC. Bioorg. Med. Chem. Lett. 2012; 22: 4998
- 6i Gupta S, Ajmera N, Gautam N, Sharma R, Gautam DC. Indian J. Chem. 2009; 48B: 853
- 6j Alizadeh SR, Hashemi SM. Med. Chem. Res. 2021; 30: 771
- 6k Elsadek MF, Ahmed BM, Farahat MF. Molecules 2021; 26: 1449
- 7a Yi B, Zhang W, Yi Z.-Q, Chen F, Zeng Q, Yi N, Lv L, Zhang F, Xie Y, Tan J.-P. J. Org. Chem. 2024; 89: 13491
- 7b Chakrabarty M, Mukherji A, Karmakar S, Mukherjee R, Nagai K, Geronikaki A, Eleni P. ARKIVOC 2010; (xi): 265
- 7c Hall CE, Taurins A. Can. J. Chem. 1966; 44: 2465
- 7d Hall CE, Taurins A. Can. J. Chem. 1966; 44: 2473
- 7e Taurins A, Hsia RK.-C. Can. J. Chem. 1971; 49: 4054
- 8 Liu W, Zhao D, He Z, Hu Y, Zhu Y, Zhang L, Jin L, Guan L, Wang S. Molecules 2022; 27: 9062
- 9a For a review, see: Iftikhar R, Kamran M, Iftikhar A, Parveen S, Naeem N, Jamil N. Mol. Diversity 2022; 27: 543
- 9b For a review, see: Olyaei A, Sadeghpour M. RSC Adv. 2019; 9: 18467
- 9c Betti M. Gazz. Chim. Ital. 1900; 30: 301
- 9d For a review, see: Cardellicchio C, Capozzi MA. M, Naso F. Tetrahedron: Asymmetry 2010; 21: 507
- 9e Olyaei A, Sadeghpour M. RSC Adv. 2024; 14: 11811
- 10a Cherkadu V, Kalavagunta PK, Ravirala N, Shivananju NS, Priya BS. Synlett 2016; 27: 2795
- 10b Salgado-Escobar O, Chavelas-Hernández L, Domínguez-Mendoza BE, Linzaga-Elizalde I, Ordoñez M. Molecules 2015; 20: 13794
- 10c Shushizadeh MR, Azizyan S. Jundishapur J. Nat. Pharm. Prod. 2014; 9: e17808
- 10d Mulla SA. R, Salama TA, Pathan MY, Inamdar SM, Chavan SS. Tetrahedron Lett. 2013; 54: 672
- 10e Jameel AA, Padusha MS. A. Asian J. Chem. 2010; 22: 3422
- 10f Barroso S, Abreu AM, Araújo AC, Coelho AM, Maulide N, Martins AM. Synlett 2010; 2425
- 10g Jurd L. J. Heterocycl. Chem. 1997; 34: 601
- 10h Shergalis A, Xue D, Gharbia FZ, Driks H, Shrestha B, Tanweer A, Cromer K, Ljungman M, Neamati N. J. Med. Chem. 2020; 63: 10263
- 11 Olyaei A, Rahmani N, Sadeghpour M, Mohamadi A. Lett. Org. Chem. 2022; 19: 333
- 12a Kantevari S, Yempala T, Yogeeswari P, Sriram D, Sridhar B. Bioorg. Med. Chem. Lett. 2011; 21: 4316
- 12b Kantevari S, Yempala T, Vuppalapati SV. N. Synthesis 2010; 959
- 13a Karami B, Farahi M, Farmani N, Tanuraghaj HM. New J. Chem. 2016; 40: 1715
- 13b Emmadi NR, Atmakur K, Chennapuram M, Nanubolu JB. RSC Adv. 2014; 4: 14501
- 13c Khandarkar KM, Shanti MD, Ahmed M, Meshram JS. J. Chem. Sci. 2013; 125: 1573
- 14 Cherkadu V, Kalavagunta PK, Ningegowda M, Shivananju NS, Madegowda M, Priya BS. Synlett 2016; 27: 1116
- 15a Taghrir H, Ghashang M, Biregan MN. Chin. Chem. Lett. 2016; 27: 119
- 15b Moosavi-Zare AR, Zolfigol MA, Daraei M. Synlett 2014; 25: 1173
- 15c Sahu PK, Sahu PK, Agarwal DD. RSC Adv. 2014; 4: 40414
- 15d Olyaei A, Zarnegar M, Sadeghpour M, Rezaei M. Lett. Org. Chem. 2012; 9: 451
- 15e Kumar A, Rao MS, Rao VK. Aust. J. Chem. 2010; 63: 1538
- 15f Jonnala S, Nameta B, Chavali M, Bantu R, Choudante P, Misra S, Sridhar B, Dilip S, Reddy BV. S. Lett. Org. Chem. 2019; 16: 837
- 15g Abolfazl O, Saeed R, Mahdieh S, Behruz E. Chin. J. Chem. 2010; 28: 825
- 15h Shahrisa A, Teimuri-Mofrad R, Gholamhosseini-Nazari M. Mol. Diversity 2015; 19: 87
- 15i Sas J, Szatmári S, Fülöp F. Tetrahedron 2015; 71: 7216
- 16a Serrao E, Debnath B, Otake H, Kuang Y, Christ F, Debyser Z, Neamati N. J. Med. Chem. 2013; 56: 2311
- 16b Ezgimen M, Lai H, Mueller NH, Lee K, Cuny G, Ostrov DA, Padmanabhan R. Antiviral Res. 2012; 94: 18
- 16c Shaabani A, Rahmati A, Farhangi E. Tetrahedron Lett. 2007; 48: 7291
- 16d Iadonato S, Bedard K, Fowler K, Kaiser S. WO 2016/057518, 2016
- 16e Venugopala KN, Krishnappa M, Nayak SK, Subrahmanya BK, Vaderapura JP, Chalannavar RK, Gleiser RM, Odhav B. Eur. J. Med. Chem. 2013; 65: 295
- 17 Gandhamsetty N, Joung S, Park S.-W, Park S, Chang S. J. Am. Chem. Soc. 2014; 136: 16780
- 18 Hosmane RS, Liebman JF. Struct. Chem. 2009; 20: 693
- 19a Sarkar A, Santra S, Kundu SK, Hajra A, Zyryanov GV, Chupakhin ON, Charushin VN, Majee A. Green Chem. 2016; 18: 4475
- 19b Liu Z.-Q, You P.-S, Wu C.-H, Han Y.-H. J. Saudi Chem. Soc. 2019; 23: 120
- 19c Totawar PR, Varala R, Pulle JS. Rev. Roum. Chim. 2023; 68: 75
- 19d Foumeshi MK, Halimehjani AZ, Paghandeh H, Beier P. Tetrahedron Lett. 2020; 61: 152270
- 19e Patil MS, Khatri CK, Chaturbhuj GU. Monatsh. Chem. 2018; 149: 1453
- 19f Hawsawi MB, Alluhaibi MS, Gandhamsetty N. Synlett 2024; in press
- 20a Willis NJ, Bray CD. Chem. Eur. J. 2012; 18: 9160
- 20b Hsiao C.-C, Raja S, Liao H.-H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
- 20c Pathak TP, Sigman MS. J. Org. Chem. 2011; 76: 9210
- 21 General Procedure 1: Synthesis of 5- and 8-[(Benzothiazol-2-ylamino)(aryl)methyl]isoquinolinols (Tables 1–3, and Schemes 2 and 3): To a 10 mL round-bottom flask, aldehyde (1.1 mmol), powdered isoquinolin-7-ol or isoquinolin-6-ol (1.0 mmol), and 2-aminobenzothiazole (1.0 mmol) were added and the components were mixed well at 20–30 °C under nitrogen. The resulting reaction mixture was introduced to a pre-heated oil bath at 140 °C for the indicated time (Tables 1–3, and Schemes 2 and 3). Upon completion of the reaction, as indicated by TLC (50% ethyl acetate in hexanes), the reaction mixture was allowed to cool to room temperature. The solid crude reaction mixture was dissolved in methanol and dichloromethane, concentrated under reduced pressure at below 45 °C, and then crystallized with isopropyl alcohol (2 × 3 mL) and diisopropyl ether (3 mL) to afford the corresponding pure products.General Procedure 2: Synthesis of 5h (Table [3]): To a 10 mL round-bottom flask, pyridine-3-carbaldehyde (1.1 mmol), powdered isoquinolin-6-ol (1.0 mmol), and 2-aminobenzothiazole (1.0 mmol) were added and the components were mixed well at 20–30 °C under nitrogen. The resulting reaction mixture was then introduced to a pre-heated oil bath at 140 °C for the indicated time (Table 3). Upon completion of the reaction, as indicated by TLC (50% ethyl acetate in hexanes), the reaction mixture was allowed to cool to 20–30 °C. The crude reaction mixture was dissolved in methanol and dichloromethane then concentrated under reduced pressure at below 45 °C. The resulting residue was purified by silica gel (60-120 mesh) column chromatography with ethyl acetate/hexanes to afford pure product 5h (Table 3).