Subscribe to RSS
DOI: 10.1055/a-2435-6207
Chemical Capture and Sensing of Bovine Serum Albumin with Phenothiazinylcarbaldehyde-Labeled 2′-Deoxyuridine
Rasayan Inc. provided a research grant to the A.R.K. group at ICT Mumbai. A.R.K. would like to acknowledge the Council of Scientific and Industrial Research (CSIR) for providing a fellowship to R.S. K.C.G. thanks CSIR, New Delhi, India (01(3079)/21/EMR-II) for the financial assistance throughout this research project.

Abstract
Chemical-capture-mediated sensing has had a great impact on proteomic research. Toward this end, we demonstrate the chemical trapping of BSA by the reactive formyl functionality of a newly developed fluorescent nucleoside probe, formylphenothiazine-labeled-2′-deoxyuridine. The probe is capable of trapping BSA via Schiff base formation leading to fluorescence ‘switch-on’ sensing with a large hypsochromic shift of ca. 100 nm. The α-amylase does not show any significant change in fluorescence response, demonstrating the efficiency of the probe in selective sensing of BSA. Docking studies suggest the preferential interaction of the phenothiazinylcarbaldehyde-labeled dU with the residual amino acids in site I of the BSA protein as compared to site II.
Key words
formylphenothiazine-labeled 2′-deoxyuridine - chemical capture - Schiff base - fluorimetric sensing - bovine serum albumin - molecular dockingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2435-6207.
- Supporting Information
Publication History
Received: 13 August 2024
Accepted after revision: 07 October 2024
Accepted Manuscript online:
07 October 2024
Article published online:
18 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Ng YL, Salim CK, Chu JJ. H. Pharmacol. Ther. 2021; 228: 107930
- 2 Walter NG, Burke JM. Methods Enzymol. 2000; 317: 409
- 3 Sinkeldam RW, Greco NJ, Tor Y. Chem. Rev. 2010; 110: 2579
- 4 Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G. Chem. Rev. 2005; 105: 1869
- 5 Xu W, Chan KM, Kool ET. Nat. Chem. 2017; 9: 1043
- 6 Li D, Song S, Fan C. Acc. Chem. Res. 2010; 43: 631
- 7 Zhou W, Saran R, Liu J. Chem. Rev. 2017; 117: 8272
- 8 Lakshman M. Chem. Rec. 2022; 23: e202200182
- 9 Kapdi AR, Sanghvi YS. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides . Kapdi AR, Maiti D, Sanghvi YS. Elsevier; Amsterdam: 2018: 1
- 10 Shaughnessy KH. Molecules 2015; 20: 9419
- 11 Zilbershtein-Shklanovsky L, Weitman M, Major DT, Fischer B. J. Org. Chem. 2013; 78: 11999
- 12 Greco NJ, Tor Y. J. Am. Chem. Soc. 2005; 127: 10784
- 13 Srivatsan SG, Greco NJ, Tor Y. Angew. Chem. Int. Ed. 2008; 47: 6661
- 14 Ardhapure AV, Gayakhe V, Bhilare S, Kapdi AR, Bag SS, Sanghvi YS, Gunturu KC. New J. Chem. 2020; 44: 14744
- 15 Liang Y, Wnuk SF. Molecules 2015; 20: 4874
- 16 Serrano JL, García L, Pérez J, Lozano P, Correia J, Kori S, Kapdi AR, Sanghvi YS. Organometallics 2020; 39: 4479
- 17 Serrano JL, Gaware S, Pérez JA, Pérez J, Lozano P, Kori S, Dandela R, Sanghvi YS, Kapdi AR. Dalton Trans. 2022; 51: 2370
- 18 Serrano JL, Pérez J, Pérez JA, da Silva I, Sahu R, Pal K, Kapdi AR, Lozano P, Sanghvi YS. Catal. Today 2024; 430: 114549
- 19 Bhilare S, Gayakhe V, Ardhapure AV, Sanghvi YS, Schulzke C, Borozdina Y, Kapdi AR. RSC Adv. 2016; 6: 83820
- 20 Bhilare S, Shet H, Sanghvi YS, Kapdi AR. Molecules 2020; 25: 1645
- 21 Bandaru SS. M, Bhilare S, Schulzke C, Kapdi AR. Chem. Rec. 2021; 21: 188
- 22 Kapdi A, Sahu R. Synlett 2022; 34: 912
- 23 Zheng XT, Tan YN. Sensors Int. 2020; 1: 100034
- 24 Ide H, Akamatsu K, Kimura Y, Michiue K, Makino K, Asaeda A, Takamori Y, Kubo K. Biochemistry 1993; 32: 8276
- 25 Hirose W, Sato K, Matsuda A. Angew. Chem. Int. Ed. 2010; 49: 8392
- 26 Raindlová V, Pohl R, Šanda M, Hocek M. Angew. Chem. Int. Ed. 2010; 49: 1064
- 27 Hardisty RE, Kawasaki F, Sahakyan AB, Balasubramanian S. J. Am. Chem. Soc. 2015; 137: 9270
- 28 Liu C, Wang Y, Zhang X, Wu F, Yang W, Zou G, Yao Q, Wang J, Chen Y, Wang S, Zhou X. Chem. Sci. 2017; 8: 4505
- 29 Wang R, Lu D, Bai H, Jin C, Yan G, Ye M, Qiu L, Chang R, Cui C, Liang H, Tan W. Chem. Sci. 2016; 7: 2157
- 30 Leone D.-L, Hubálek M, Pohl R, Sýkorová V, Hocek M. Angew. Chem. Int. Ed. 2021; 60: 17383
- 31 Wickramaratne S, Mukherjee S, Villalta PW, Schärer OD, Tretyakova NY. Bioconjugate Chem. 2013; 24: 1496
- 32 Raindlová V, Pohl R, Hocek M. Chem. Eur. J. 2012; 18: 4080
- 33 Krömer M, Brunderová M, Ivancová I, Slavětínská LP, Hocek M. ChemPlusChem 2020; 85: 1164
- 34 Koniev O, Wagner A. Chem. Soc. Rev. 2015; 44: 5495
- 35 Bhilare S, Murthy Bandaru SS, Kapdi AR, Sanghvi YS, Schulzke C. Curr. Protoc. Nucleic Acid Chem. 2018; 74: e58
- 36 Posso MC, Domingues FC, Ferreira S, Silvestre S. Molecules 2022; 27: 276
- 37 Khan F, Misra R. J. Mater. Chem. C 2023; 11: 2786
- 38 Mosnaim AD, Ranade VV, Wolf ME, Puente J, Antonieta Valenzuela M. Am. J. Ther. 2006; 13: 261
- 39 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M. a, Cheeseman JR, Scalmani G, Barone V, Petersson G. a, Nakatsuji H, Li X, Caricato M, Marenich aV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov aF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J. aJr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith T. a, Kobayashi R, Normand J, Raghavachari K, Rendell aP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16 . Gaussian, Inc; Wallingford CT: 2016
- 40 Mishra V, Heath RJ. Int. J. Mol. Sci. 2021; 22: 8411
- 41 Patra S, Santhosh K, Pabbathi A, Samanta A. RSC Adv. 2012; 2: 6079
- 42 Topală T, Bodoki A, Oprean L, Oprean R. Clujul Med. 2014; 87: 215
- 43 Ni Y, Su S, Kokot S. Anal. Chim. Acta 2006; 580: 206
- 44 Bag SS, Gogoi H. J. Org. Chem. 2018; 83: 7606
- 45 Bag SS, Das SK. Tetrahedron 2019; 75: 3024
- 46 Trott O, Olson AJ. J. Comput. Chem. 2010; 31: 455