Subscribe to RSS
DOI: 10.1055/a-2420-2617
Synthesis of Diaryl Diselenides and Ditellurides via Bromide-Catalyzed C–Se/C–Te Bond Formation Using Se/Te Powder and Boronic Acid
We thank the National Natural Science Foundation of China (No. 22301128) and the Natural Science Foundation of Hunan Province (No. 2022JJ40353) for financial support.

Abstract
Diaryl diselenides and diaryl ditellurides are commonly employed as selenyl or telluryl sources, and they have a wide range of applications in organic synthesis. Herein, various diaryl diselenides/ditellurides are furnished in moderate to excellent yields under metal-free conditions. This method features high efficiency, good functional group tolerance, straightforward operation, and easy scale-up (running in 4 mmol-scale for most cases). Mechanistic studies indicate that this reaction may proceed via a radical pathway. Significantly, the correct matching of Br– and dimethyl sulfoxide under an air atmosphere is critical to this transformation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2420-2617.
- Supporting Information
Publication History
Received: 26 July 2024
Accepted after revision: 23 September 2024
Accepted Manuscript online:
23 September 2024
Article published online:
09 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
- 1b Mugesh G, Singh HB. Chem. Soc. Rev. 2000; 29: 347
- 1c Giles NM, Kumari S, Stamm RA, Patel S, Giles GI. Anal. Biochem. 2012; 429: 103
- 1d Muller A, Cadenas E, Graf P, Sies H. Biochem. Pharmacol. 1984; 33: 3235
- 1e Goudgaon NM, Naguib FN, el Kouni MH, Schinazi RF. J. Med. Chem. 1993; 36: 4250
- 2a Cai J, Cen K, Lin H, Zhang H, Zhou N, Wang Q. ChemCatChem 2024; e202400929
- 2b Cen K, Liu Y, Yu J, Zeng Z, Hou Q, He G, Ouyang M, Wang Q, Wang D, Zhao F, Cai J. J. Org. Chem. 2024; 89: 8632
- 2c Cen K, Wei J, Liu Y, Tan Z, Wang X, Wang D, He W.-M, Cai J. Eur. J. Org. Chem. 2023; e202300968
- 2d Ji H.-T, Jiang J, He W.-B, Lu Y.-H, Liu Y.-Y, Li X, He W.-M. J. Org. Chem. 2024; 89: 4113
- 2e Luo Q.-X, Ji H.-T, Lu Y.-H, Wang K.-L, Ou L.-J, He W.-M. J. Org. Chem. 2023; 88: 16790
- 2f Jiang J, Wang K.-L, Li X, Wu C, Ji H.-T, Chen X, He W.-M. Chin. Chem. Lett. 2023; 34: 108699
- 2g Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng G. Org. Lett. 2019; 21: 3518
- 2h Liu Y, Liu M.-C, Zhou Y.-B, Wu H.-Y. Eur. J. Org. Chem. 2023; e202301072
- 2i Ma Y.-T, Liu M.-C, Zhou Y.-B, Wu H.-Y. Adv. Synth. Catal. 2021; 363: 5386
- 2j Guo H.-C, Lin J, Liu M.-C, Zhou Y.-B, Wu H.-Y. Tetrahedron Lett. 2023; 132: 154825
- 2k Zhang X, Huang X.-B, Zhou Y.-B, Liu M.-C, Wu H.-Y. Chem. Eur. J. 2021; 27: 944
- 2l Li J.-C, Gao W.-X, Liu M.-C, Zhou Y.-B, Wu H.-Y. J. Org. Chem. 2021; 86: 17294
- 2m Yang Y.-F, Li C.-Y, Leng T, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. Adv. Synth. Catal. 2020; 362: 5639
- 2n Jin G.-Q, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. RSC Adv. 2020; 10: 30439
- 2o Wu J, Yang Y.-F, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. ACS Omega 2020; 5: 23358
- 2p An C, Li C.-Y, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. Org. Lett. 2019; 21: 6710
- 2q Zhang X, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. Adv. Synth. Catal. 2020; 362: 2168
- 3a Song W.-H, Shi J, Chen X, Song G. J. Org. Chem. 2020; 85: 11104
- 3b Ma W, Weng Z, Fang X, Gu L, Song Y, Ackermann L. Eur. J. Org. Chem. 2019; 41
- 3c Wang Q, Ma X.-L, Chen Y.-Y, Jiang C.-N, Xu Y.-L. Eur. J. Org. Chem. 2020; 4384
- 3d Lin S, Cheng X, Hasimujiang B, Xu Z, Li F, Ruan Z. Org. Biomol. Chem. 2022; 20: 117
- 3e Li X.-D, Gao Y.-T, Sun Y.-J, Jin X.-Y, Wang D, Liu L, Cheng L. Org. Lett. 2019; 21: 6643
- 3f Yin J, Chen P, Miao L.-W, Wang J, Jiang Y.-J. Eur. J. Org. Chem. 2023; e202300290
- 3g Morajkar RV, Fatrekar AP, Mohanty A, Vernekar AA. Curr. Org. Synth. 2022; 19: 366
- 3h Chen Z, Wang Y, Hu C, Wang D, Lei P, Yi H, Yuan Y, Lei A. Org. Lett. 2022; 24: 3307
- 3i Cheng X, Hasimujiang B, Xu Z, Cai H, Chen G, Mo G, Ruan Z. J. Org. Chem. 2021; 86: 16045
- 3j Lu L, Huang D, Wang Z, Wang X, Wu X. Adv. Synth. Catal. 2023; 365: 2310
- 3k Zeng S, Zeng Y, Wang H, Sun P, Ruan Z. J. Org. Chem. 2024; 89: 4074
- 3l Sun L, Wang L, Alhumade H, Yi H, Cai H, Lei A. Org. Lett. 2021; 23: 7724
- 3m Wang H.-H, Zhu Y.-Y, Chen C.-L, Huang X.-B, Liu M.-C, Zhou Y.-B, Wu H.-Y. Chem. Commun. 2024; 60: 862
- 4a Li Z, Ke F, Deng H, Xu H, Xiang H, Zhou X. Org. Biomol. Chem. 2013; 11: 2943
- 4b Singh D, Deobald AM, Camargo LR. S, Tabarelli G, Rodrigues OE. D, Braga AL. Org. Lett. 2010; 12: 3288
- 4c Kassaee MZ, Motamedi E, Movassagh B, Poursadeghi S. Synthesis 2013; 45: 2337
- 4d Soleiman-Beigi M, Yavari I, Sadeghizadeh F. RSC Adv. 2015; 5: 87564
- 4e Balkrishna SJ, Bhakuni BS, Kumar S. Tetrahedron 2011; 67: 9565
- 4f Taniguchi N. Tetrahedron 2012; 68: 10510
- 4g Li Y, Nie C, Wang H, Li X, Verpoort F, Duan C. Eur. J. Org. Chem. 2011; 7331
- 5a Chen C.-L, Li J.-C, Liu M.-C, Zhou Y.-B, Wu H.-Y. Tetrahedron Lett. 2022; 113: 154255
- 5b Liu M.-C, Yang Y.-F, Zhao S.-B, Leng T, Huang X.-B, Gao W.-X, Wu H.-Y. 20180129 CN108047107A, 2018
- 5c Chen J.-X, Liu M.-C, Huang X.-B, Gao W.-X, Ding J.-C, Wu H.-Y. 20131204 CN103739536A, 2013
- 6a Mairhofer C, Waser M. Adv. Synth. Catal. 2023; 365: 2757
- 6b Komagawa H, Maejima Y, Nagano T. Synlett 2015; 26: 789
- 6c Yu T.-Q, Hou Y.-S, Jiang Y, Xu W.-X, Shi T, Wu X, Zhang J.-C, He D, Wang Z. Tetrahedron Lett. 2017; 58: 2084
- 6d Zhu X, Shi Y, Mao H, Cheng Y, Zhu C. Adv. Synth. Catal. 2013; 355: 3558
- 6e Wan J.-L, Huang J.-M. Adv. Synth. Catal. 2022; 364: 2648
- 6f Guo Q, Chen J, Shen G, Lu G, Yang X, Tang Y, Zhu Y, Wu S, Fan B. J. Org. Chem. 2022; 87: 540
- 6g Jiang Y.-Y, Dou G.-Y, Xu K, Zeng C.-C. Org. Chem. Front. 2018; 5: 2573
- 6h Zong Z.-M, Wang M, Zhao X.-J, He Y. Org. Chem. Front. 2024; 11: 3525
- 6i Wang Q.-L, Huang H, Zhu M, Xu T, Mao G, Deng G.-J. Org. Lett. 2023; 25: 3800
- 6j Wang Q.-L, Huang H, Mao G, Deng G.-J. Org. Chem. Front. 2023; 10: 890
- 6k Sun Z, Huang H, Wang Q, Deng G.-J. Adv. Synth. Catal. 2022; 364: 453
- 6l Wang Q.-L, Huang H, Sun Z, Chen Y, Deng G.-J. Green Chem. 2021; 23: 7790
- 7a Huang J, Li X, Xu L, Wei Y. J. Org. Chem. 2023; 88: 3054
- 7b Zhu J, Zhu W, Xie P, Pittman CU, Zhou A. Tetrahedron 2018; 74: 6569
- 7c Ren YK, Xu BJ, Zhong ZJ, Pittman CU, Zhou A. Org. Chem. Front. 2019; 6: 2023
- 7d Behaghel O, Seibert H. Ber. Dtsch. Chem. Ges. B 1932; 65: 812
- 8 Kommula D, Li Q, Ning S, Liu W, Wang Q, Zhao ZK. Synth. Commun. 2020; 50: 1026
- 9 Synthesis of Diphenyl Diselenide (2a); Typical Procedure: Under air atmosphere, a mixture of boronic acid 1 (4 mmol, 1 equiv), Se (4.8 mmol, 1.2 equiv), NH4Br (0.8 mmol, 0.2 equiv), and DMSO (8 mL) was added to a 25 mL round-bottom flask. The obtained solution was stirred at 120 °C for 12 hours. When the reaction was complete, the reaction was quenched with H2O (10 mL) and the mixture was extracted with EtOAc (3 × 15 mL). The combined organic phase was dried with anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure to give a crude residue, which was purified by flash column chromatography to provide the desired product 2a (508.7 mg, 81% yield) as a yellow solid. 1H NMR (500 MHz, CDCl3): δ = 7.61–7.56 (m, 4 H), 7.26–7.19 (m, 6 H). The NMR spectra were identical to those previously reported in ref. 5a.
Selected examples:
Selected examples:
Selected examples:
Selected examples:
Selected examples: