Subscribe to RSS
DOI: 10.1055/a-2160-5397
Maligne Lymphome – Quo vadis?
Welche Entwicklungen erwarten uns in der Diagnostik und Therapie?Malignant lymphomas – quo vadis?What developments await us in diagnostics and therapy?
Die stetig fortschreitenden Entwicklungen in der Diagnostik und Therapie maligner Lymphome machen Hoffnung, stoßen aber auch immer wieder an Grenzen. Zielgerichtete und individualisierte Ansätze eröffnen immer mehr Möglichkeiten. Hier wollen wir einen Ausblick wagen und neue diagnostische und therapeutische Verfahren näher beleuchten, die derzeit noch nicht in der klinischen Routine angelangt sind, aber das Potenzial haben, in naher Zukunft die diagnostische und therapeutische Landschaft maligner Lymphome nachhaltig zu prägen.
Abstract
The diagnosis and treatment of malignant lymphoma is rapidly advancing, offering hope but also highlighting inherent limitations. Technological breakthroughs in sequencing technologies enable more precise subtyping and risk stratification. For example, in diffuse large B-cell lymphoma (DLBCL), exome sequencing revealed molecular subtypes. Understanding these subtypes sheds light on lymphomagenesis and prognosis, and may provide targets for tailored therapies. Additionally, tumor-derived cell-free DNA (ctDNA) detected in blood plasma allows for genotyping, risk stratification, and measurement of minimal residual disease (MRD). Current studies often examine drug effectiveness through “all-comer” approaches or in transcriptionally defined subtypes. Molecular agnostic studies increasingly focus on clinically defined high-risk patients (e.g., using the IPI) to better demonstrate the statistical significance of therapy effects. Improved patient selection can enhance the cost-effectiveness of modern, often expensive, therapies.
-
Der technologische Fortschritt in den Sequenzier-Technologien erlaubt eine genauere Subtypisierung und Risikostratifizierung von malignen Lymphomen.
-
Beim diffus großzelligen B-Zell-Lymphom (DLBCL) konnten durch Exom-Sequenzierung molekulare Subtypen identifiziert werden. Diese Subtypen erlauben nicht nur nähere Einblicke in die unterschiedliche Lymphoma-Genese und -Prognose, sondern sind möglicherweise auch durch gezielte Therapien angehbar.
-
Vom Tumor abstammende zellfreie DNA (ctDNA) kann im Blutplasma detektiert werden und zur Genotypisierung, Risikostratifizierung und Messung minimaler Resterkrankung (MRD) herangezogen werden.
-
In aktuellen Studienkonzepten wird die Wirksamkeit von Medikamenten meist noch in „All-Comer“-Studien oder in transkriptionell definierten Subtypen untersucht. Für molekularagnostische Studien werden zunehmend klinisch definierte Hochrisiko-Patienten selektioniert (z.B. mithilfe des IPI), um Therapieeffekte statistisch sichtbarer zu machen.
-
Eine bessere Patientenauswahl kann die Wirtschaftlichkeit moderner, sehr teurer Therapien verbessern.
Schlüsselwörter
maligne Lymphome - Diagnostik - Therapie - molekularagnostisch - molekularinformiert - All comer-StudienKeywords
malignant lymphomas - diagnosis - therapy - molecular agnostic - molecularly informed - all comer studiesPublication History
Article published online:
15 May 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 1993; 329: 987-994
- 2 Alizadeh AA, Eisen MB, Davis RE. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503-511
- 3 Chapuy B, Stewart C, Dunford AJ. et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 2018; 24: 679-690
- 4 Schmitz R, Wright GW, Huang DW. et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med 2018; 378: 1396-1407
- 5 Wright GW, Huang DW, Phelan JD. et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020; 37: 551-568.e514
- 6 Bojarczuk K, Wienand K, Ryan JA. et al. Targeted inhibition of PI3Kα/δ is synergistic with BCL-2 blockade in genetically defined subtypes of DLBCL. Blood 2019; 133: 70-80
- 7 Wilson WH, Wright GW, Huang DW. et al. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell 2021; 39: 1643-1653.e1643
- 8 Mutter JA, Alig SK, Esfahani MS. et al. Circulating Tumor DNA Profiling for Detection, Risk Stratification, and Classification of Brain Lymphomas. J Clin Oncol 2023; 41: 1684-1694
- 9 Scherer F, Kurtz DM, Newman AM. et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med 2016; 8: 364ra155
- 10 Alig SK, Shahrokh Esfahani M, Garofalo A. et al. Distinct Hodgkin lymphoma subtypes defined by noninvasive genomic profiling. Nature 2024; 625: 778-787
- 11 Hoster E, Delfau-Larue MH, Macintyre E. et al. Predictive Value of Minimal Residual Disease for Efficacy of Rituximab Maintenance in Mantle Cell Lymphoma: Results From the European Mantle Cell Lymphoma Elderly Trial. J Clin Oncol 2024; 42 (05) 538-549
- 12 Pott C, Jurinovic V, Trotman J. et al. Minimal Residual Disease Status Predicts Outcome in Patients With Previously Untreated Follicular Lymphoma: A Prospective Analysis of the Phase III GALLIUM Study. J Clin Oncol 2023; 42 (05) 550-561
- 13 Kurtz DM, Scherer F, Jin MC. et al. Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J Clin Oncol 2018; 36: 2845-2853
- 14 Sobesky S, Mammadova L, Cirillo M. et al. In-depth cell-free DNA sequencing reveals genomic landscape of Hodgkin’s lymphoma and facilitates ultrasensitive residual disease detection. Med 2021; 2 (10) 1171-1193.e1111
- 15 Goy A. Succeeding in Breaking the R-CHOP Ceiling in DLBCL: Learning From Negative Trials. J Clin Oncol 2017; 35: 3519-3522
- 16 Chavez JC, Dickinson M, Munoz JL. et al. 3-Year Analysis of ZUMA-12: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) As First-Line Therapy in Patients with High-Risk Large B-Cell Lymphoma (LBCL). Blood 2023; 142: 894-894
- 17 Westin J, Steiner RE, Chihara D. et al. Smart Stop: Lenalidomide, Tafasitamab, Rituximab, and Acalabrutinib Alone and with Combination Chemotherapy for the Treatment of Newly Diagnosed Diffuse Large B-Cell Lymphoma. Blood 2023; 142: 856-856
- 18 Zhang MC, Tian S, Fu D. et al. Genetic subtype-guided immunochemotherapy in diffuse large B cell lymphoma: The randomized GUIDANCE-01 trial. Cancer Cell 2023; 41: 1705-1716.e1705
- 19 Melani C, Lakhotia R, Pittaluga S. et al. Phase Ib/II Study of Multi-Targeted Therapy with Venetoclax, Ibrutinib, Prednisone, Obinutuzumab, and Lenalidomide (ViPOR) in Relapsed/Refractory (R/R) Diffuse Large B-Cell Lymphoma (DLBCL). Blood 2023; 142: 434
- 20 Kornauth C, Pemovska T, Vladimer GI. et al. Functional Precision Medicine Provides Clinical Benefit in Advanced Aggressive Hematologic Cancers and Identifies Exceptional Responders. Cancer Discov 2022; 12: 372-387