Synlett 2024; 35(03): 347-351
DOI: 10.1055/a-2122-8406
cluster
Organic Chemistry Under Visible Light: Photolytic and Photocatalytic Organic Transformations

Photoredox Defluorinative Silylation of α-Trifluoromethyl Arylalkenes Using Silacarboxylic Acids as Silyl Radical Precursors

Yi Zhang
,
Guihua Nie
,
Zhichao Jin
,
Shichao Ren
We acknowledge financial support from the National Natural Science Foundation of China (21961006, 22071036, 32172459), National Basic Research Program of China (2022YFD1700300), The 10 Talent Plan (Shicengci) of Guizhou Province ([2016]5649), the Science and Technology Department of Guizhou Province ([2019]1020, Qiankehejichu-ZK[2021]Key033), the Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University, Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province [Qianjiaohe KY (2020)004], and Guizhou University (China).


Abstract

A photoredox defluorinative silylation of α-trifluoromethyl arylalkenes for rapid access to useful gem-difluoroalkenes is disclosed. Stable and easily prepared silacarboxylic acids are used as silyl radical precursors in a photocatalytic decarboxylative process. The mild conditions and operational simplicity make our method a straightforward strategy to construct gem-difluoroalkenes bearing various functional groups, and a powerful strategy for incorporating a gem-difluoroalkene moiety into natural products and drug molecules.

Supporting Information



Publication History

Received: 26 May 2023

Accepted after revision: 04 July 2023

Accepted Manuscript online:
04 July 2023

Article published online:
21 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience. 2020; 23: 101467
    • 1b Inoue M, Sumii Y, Shibata N. ACS Omega. 2020; 5: 10633
    • 2a Lim MH, Kim HO, Moon HR, Chun MW, Jeong LS. Org. Lett. 2002; 4: 529
    • 2b Magueur G, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J.-P. J. Fluorine. Chem. 2006; 127: 637
    • 2c Uddin A, Chawla M, Irfan I, Mahajan S, Singh S, Abid M. RSC Med. Chem. 2021; 12: 24
    • 3a Bobek M, Kavai I, De Clercq E. J. Med. Chem. 1987; 30: 1494
    • 3b Pan Y, Qiu J, Silverman RB. J. Med. Chem. 2003; 46: 5292
    • 3c Woodley CM. Amado P. S. M, Cristiano ML. S, O’Neill PM. Med. Res. Rev. 2021; 41: 3062
    • 5a Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
    • 5b Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
    • 5c Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631
    • 6a Sakaguchi H, Ohashi M, Ogoshi S. Angew. Chem. Int. Ed. 2018; 57: 328
    • 6b Coates G, Tan HY, Kalff C, White AJ. P, Crimmin MR. Angew. Chem. Int. Ed. 2019; 58: 12514
    • 6c Tan D.-H, Lin E, Ji W.-W, Zeng Y.-F, Fan W.-X, Li Q, Gao H, Wang H. Adv. Synth. Catal. 2018; 360: 1032
    • 6d Paioti PH. S, del Pozo J, Mikus MS, Lee J, Koh MJ, Romiti F, Torker S, Hoveyda AH. J. Am. Chem. Soc. 2019; 141: 19917
    • 6e Gao P, Gao L, Xi L, Zhang Z, Li S, Shi Z. Org. Chem. Front. 2020; 7: 2618
    • 6f Xu M, You M, Su Y, Lu BR, Liu L, Lv X, Wang S, Mao H, Zhou L. Org. Chem. Front. 2023; 10: 1521
  • 8 Gomberg M. J. Am. Chem. Soc. 1900; 22: 757
    • 9a Hofmann RJ, Vlatković M, Wiesbrock F. Polymers 2017; 9: 534
    • 9b Ren L.-Q, Li N, Ke J, He C. Org. Chem. Front. 2022; 9: 6400
    • 10a Yue F, Liu J, Ma H, Liu Y, Dong J, Wang Q. Org. Lett. 2022; 24: 4019
    • 10b Luo C, Zhou Y, Chen H, Wang T, Zhang Z.-B, Han P, Jing L.-H. Org. Lett. 2022; 24: 4286
    • 11a Qrareya H, Dondi D, Ravelli D, Fagnoni M. ChemCatChem. 2015; 7: 3350
    • 11b Zhang P, Le C, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
    • 11c Zhou R, Goh YY, Liu H, Tao H, Li L, Wu J. Angew. Chem. Int. Ed. 2017; 56: 16621
    • 11d Hou J, Ee A, Cao H, Ong H.-W, Xu J.-H, Wu J. Angew. Chem. Int. Ed. 2018; 57: 17220
    • 11e Li J.-S, Wu J. ChemPhotoChem. 2018; 2: 839
    • 11f Le C, Chen TQ, Liang T, Zhang P, MacMillan D.W. C. Science. 2018; 360: 1010
    • 11g Fan X, Xiao P, Jiao Z, Yang T, Dai X, Xu W, Tan JD, Cui G, Su H, Fang W, Wu J. Angew. Chem. Int. Ed. 2019; 58: 12580
    • 11h Liu S, Pan P, Fan H, Li H, Wang W, Zhang Y. Chem. Sci. 2019; 10: 3817
    • 11i Zhou R, Li J, Cheo HW, Chua R, Zhan G, Hou Z, Wu J. Chem. Sci. 2019; 10: 7340
    • 11j Takemura N, Sumida Y, Ohmiya H. ACS Catal. 2022; 12: 7804
    • 12a Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 12b Guo L.-N, Wang H, Duan X.-H. Org. Biomol. Chem. 2016; 14: 7380
    • 12c Kitcatt DM, Nicolle S, Lee A.-L. Chem. Soc. Rev. 2022; 51: 1415
  • 13 Xu N.-X, Li B.-X, Wang C, Uchiyama M. Angew. Chem. Int. Ed. 2020; 59: 10639
    • 14a Ren S, Feng C, Loh T.-P. Org. Biomol. Chem. 2015; 13: 5105
    • 14b Ren S.-C, Zhang F.-L, Qi J, Huang Y.-S, Xu A.-Q, Yan H.-Y, Wang Y.-F. J. Am. Chem. Soc. 2017; 139: 6050
    • 14c Ren S.-C, Zhang F.-L, Xu A.-Q, Yang Y, Wang Y.-F. Nat. Commun. 2019; 10: 1934
    • 15a Ren S.-C, Lv W.-X, Yang X, Yan J.-L, Xu J, Wang F.-X, Hao L, Chai H, Jin Z, Chi YR. ACS Catal. 2021; 11: 2925
    • 15b Bao Z, Zou J, Mou C, Jin Z, Ren S.-C, Chi YR. Org. Lett. 2022; 24: 8907
    • 15c Ren S.-C, Yang X, Mondal B, Mou C, Tian W, Jin Z, Chi YR. Nat. Commun. 2022; 13: 2846
  • 16 Silylated gem-Difluoroalkenes 3a–z; General Procedure A screw-capped vial equipped with a stirrer bar was charged with the appropriate silanecarboxylic acid 1 (0.1 mmol, 1.0 equiv), difluoroalkene 2 (0.11 mmol, 1.1 equiv), 4CzIPN (PC1 ; 2 mol%), and K2CO3 (0.15 mmol, 1.5 equiv) under N2 in a glove box. EtOAc (1.5 mL) was added the vial from a syringe, and the vial was sealed with a cap containing a PTFE septum and removed from the glove box. The stirred mixture was then irradiated by a 20 W blue LED under a N2 balloon for 12 h. When the reaction was complete, the crude mixture was purified by flash chromatography (silica gel, PE). (3,3-Difluoro-2-phenylprop-2-en-1-yl)(dimethyl)phenylsilane (3a)17 Colourless oil; yield: 27 mg (93%). 1H NMR (400 MHz, CDCl3): δ = 7.41–7.44 (m, 2 H), 7.20–7.35 (m, 8 H,), 1.98 (dd, J = 2.1 Hz, J= 3.1 Hz, 2 H), 0.15 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 152.7 (dd, J = 284.3 Hz, J = 288.1 Hz), 138.2, 134.9 (dd, J = 3.7 Hz, J = 5.1 Hz), 133.4, 129.1, 128.3 (t, J = 2.9 Hz), 128.2, 127.7, 127.1, 90.0 (dd, J = 14.6 Hz, 23.4 Hz), 16.5, –3.0. 19F NMR (377 MHz, CDCl3): δ = –91.7 (d, J = 48.6 Hz), –94.3 (d, J = 48.5 Hz).
  • 17 Aelterman M, Biremond T, Jubault P, Poisson T. Chem. Eur. J. 2022; 28: e202202194