Subscribe to RSS
DOI: 10.1055/a-1942-7033
Copper Nitrate Mediated Regioselective Difunctionalization of Alkenes with N-Fluorobenzenesulfonimide: A Direct Approach to β-Aminonitrates
We thank the National Natural Science Foundation of China (Nos. 21871174, 22171178, 22071143) and the Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00008) for financial support.

Abstract
An efficient copper nitrate mediated difunctionalization of alkenes with N-fluorobenzenesulfonimide (NFSI) has been developed for the direct synthesis of β-aminonitrates in moderate to excellent yields with high regioselectivity. This reaction proceeds through a radical process, where copper nitrate is used as the nitrate source and NFSI as the nitrogen source. The given protocol provides a direct access to functionalized nitrates with operational simplicity, good functional group tolerance, and a wide substrate scope. The reaction can be performed on a gram scale and the synthetic utility of the product is demonstrated.
Key words
copper nitrate - difunctionalization - alkenes - aminonitrates - N-fluorobenzenesulfonimideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1942-7033.
- Supporting Information
Publication History
Received: 22 July 2022
Accepted after revision: 14 September 2022
Accepted Manuscript online:
14 September 2022
Article published online:
24 October 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Wang PG, Xian M, Tang XP, Wu XJ, Wen Z, Cai TW, Janczuk AJ. Chem. Rev. 2002; 102: 1091
- 1b Cai TB, Wang PG, Holder AA. Nitric Oxide Donors: For Pharmaceutical and Biological Applications . Wang PG, Cai TB, Taniguchi N. Wiley-VCH; Weinheim: 2005: 3-31
- 2a Agrawal JP, Hodgson RD. Organic Chemistry of Explosives . Wiley; Hoboken, NJ: 2007
- 2b Klapötke TM. Chemistry of High-Energy Materials, 3rd ed. De Gruyter; Berlin: 2015
- 3a Boschan R, Merrow RT, van Dolah RW. Chem. Rev. 1955; 55: 485
- 3b Graham TH, Jones CM, Jui NT, MacMillan DW. C. J. Am. Chem. Soc. 2008; 130: 16494
- 3c Kamijo S, Amaoka Y, Inoue M. Tetrahedron Lett. 2011; 52: 4654
- 3d Taniguchi T, Yajima A, Ishibashi H. Adv. Synth. Catal. 2011; 353: 2643
- 3e Zhang X.-W, Xiao Z.-F, Zhuang Y.-J, Wang M.-M, Kang Y.-B. Adv. Synth. Catal. 2016; 358: 1942
- 3f Bag R, Sar D, Punniyamurthy T. ACS Omega 2017; 2: 6278
- 3g Yang B, Hou S.-M, Ding S.-Y, Zhao X.-N, Gao Y, Wang X, Yang S.-D. Adv. Synth. Catal. 2018; 360: 4470
- 3h Mir BA, Rajamanickam S, Begum P, Patel BK. Eur. J. Org. Chem. 2020; 2617
- 4a Ishihara S, Saito F, Ohhata Y, Kanai M, Mizuno H, Fujisawa M, Yorikane R, Koike H. Bioorg. Med. Chem. Lett. 2003; 13: 1527
- 4b Biava M, Battilocchio C, Poce G, Alfonso S, Consalvi S, Di Capua A, Calderone V, Martelli A, Testai L, Sautebin L, Rossi A, Ghelardini C, Di Cesare Mannelli L, Giordani A, Persiani S, Colovic M, Dovizio M, Patrignani P, Anzini M. Bioorg. Med. Chem. 2014; 22: 772
- 4c Makhaeva GF, Proshin AN, Boltneva NP, Rudakova EV, Kovaleva NV, Serebryakova OG, Serkov IV, Bachurin SO. Russ. Chem. Bull. 2016; 65: 1586
- 4d Ren S.-Z, Wang Z.-C, Zhu D, Zhu X.-H, Shen F.-Q, Wu S.-Y, Chen J.-J, Xu C, Zhu H.-L. Eur. J. Med. Chem. 2018; 157: 909
- 5a Gavrila A, Andersen L, Skrydstrup T. Tetrahedron Lett. 2005; 46: 6205
- 5b Ustinov AK, Serkov IV, Proshin AN, Kovaleva NV, Boltneva NP, Makhaeva GF, Bachurin SO. Russ. Chem. Bull. 2016; 65: 2718
- 5c Serkov IV, Proshin AN, Ustinov AK, Bachurin SO. Dokl. Chem. 2016; 466: 45
- 6a Chen P, Liu G. Eur. J. Org. Chem. 2015; 4295
- 6b Fu L, Greßies S, Chen P, Liu G. Chin. J. Chem. 2020; 38: 91
- 6c Wu Y.-C, Xiao Y.-T, Yang Y.-Z, Song R.-J, Li J.-H. ChemCatChem 2020; 12: 5312
- 6d Zheng Y.-N, Zheng H, Li T, Wei W.-T. ChemSusChem 2021; 14: 5340
- 6e Wu Z, Hu M, Li J, Wu W, Jiang H. Org. Biomol. Chem. 2021; 19: 3036
- 6f Chen X, Xiao F, He W.-M. Org. Chem. Front. 2021; 8: 5206
- 7a Hennecke U, Wald T, Rösner C, Robert T, Oestreich M. In Comprehensive Organic Synthesis, 2nd ed., Vol. 7. Knochel P, Molander GA. Elsevier; Oxford: 2014: 638
- 7b Cresswell AJ, Eey ST.-C, Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
- 7c Bock J, Guria S, Wedek V, Hennecke U. Chem. Eur. J. 2021; 27: 4517
- 8a Li G, Kotti SR. S. S, Timmons C. Eur. J. Org. Chem. 2007; 2745
- 8b Chemler SR, Bovino MT. ACS Catal. 2013; 3: 1076
- 8c Long H.-J, Li Y.-L, Zhang B.-Q, Xiao W.-Y, Zhang X.-Y, He L, Deng J. Org. Lett. 2021; 23: 8153
- 8d Kato T, Okada Y, Fujii Y, Uyanik M, Ishihara K. Asian J. Org. Chem. 2021; 10: 2907
- 9a Cordero F, Cacciarini M, Machetti F, De Sarlo F. Eur. J. Org. Chem. 2002; 1407
- 9b Iwasaki M, Fujii T, Nakajima K, Nishihara Y. Angew. Chem. Int. Ed. 2014; 53: 13880
- 9c Ning Y, Ji Q, Liao P, Anderson EA, Bi X. Angew. Chem. Int. Ed. 2017; 56: 13805
- 10a Kuang J, Yang K, Song Q. Org. Lett. 2017; 19: 2702
- 10b Li Y, Liang Y, Dong J, Deng Y, Zhao C, Su Z, Guan W, Bi X, Liu Q, Fu J. J. Am. Chem. Soc. 2019; 141: 18475
- 10c Lv D, Sun Q, Zhou H, Ge L, Qu Y, Li T, Ma X, Li Y, Bao H. Angew. Chem. Int. Ed. 2021; 60: 12455
- 10d Engl S, Reiser O. Org. Lett. 2021; 23: 5581
- 10e Zhao J, Huang H.-G, Li W, Liu W.-B. Org. Lett. 2021; 23: 5102
- 11a Hemric BN, Wang Q. Beilstein J. Org. Chem. 2016; 12: 22
- 11b Ren S, Song S, Ye L, Feng C, Loh T.-P. Chem. Commun. 2016; 52: 10373
- 11c Sakata N, Okamoto K, Ohe K. Org. Lett. 2017; 19: 3422
- 11d Oh H, Han SB, Lee H. Adv. Synth. Catal. 2019; 361: 2136
- 11e Li S, Chen Q, Li W, Gu G, Zhang J. Chin. J. Chem. 2020; 38: 1116
- 11f Wdowik T, Galster SL, Carmo RL. L, Chemler SR. ACS Catal. 2020; 10: 8535
- 11g Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Angew. Chem. Int. Ed. 2020; 59: 20439
- 11h Zhang Z, Ngo DT, Nagib DA. ACS Catal. 2021; 11: 3473
- 11i Wu L, Zhang Z, Wu D, Wang F, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2021; 60: 6997
- 12a Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
- 12b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 13a Engle KM, Mei T.-S, Wang X, Yu J.-Q. Angew. Chem. Int. Ed. 2011; 50: 1478
- 13b Ball ND, Gary JB, Ye Y, Sanford MS. J. Am. Chem. Soc. 2011; 133: 7577
- 13c Rozatian N, Hodgson DR. W. Chem. Commun. 2021; 57: 683
- 14a Sibbald PA, Rosewall CF, Swartz RD, Michael FE. J. Am. Chem. Soc. 2009; 131: 15945
- 14b Qiu SF, Xu T, Zhou J, Guo YL, Liu GS. J. Am. Chem. Soc. 2010; 132: 2856
- 14c Muñiz K, Kirsch J, Chávez P. Adv. Synth. Catal. 2011; 353: 689
- 14d Samanta S, Hajra A. J. Org. Chem. 2018; 83: 13157
- 14e Zhu Y.-L, Zhu C.-F, Zhou P, Hao W.-J, Wang D.-C, Tu S.-J, Jiang B. J. Org. Chem. 2018; 83: 9641
- 14f Guo P, Han J.-F, Yuan G.-C, Chen L, Liao J.-B, Ye K.-Y. Org. Lett. 2021; 23: 4067
- 15a Ni Z, Zhang Q, Xiong T, Zheng Y, Li Y, Zhang H, Zhang J, Liu Q. Angew. Chem. Int. Ed. 2012; 51: 1244
- 15b Zhang H, Pu W, Xiong T, Li Y, Zhou X, Sun K, Liu Q, Zhang Q. Angew. Chem. Int. Ed. 2013; 52: 2529
- 15c Zhang H, Song Y, Zhao J, Zhang J, Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079
- 15d Zhang G, Xiong T, Wang Z, Xu G, Wang X, Zhang Q. Angew. Chem. Int. Ed. 2015; 54: 12649
- 15e Sun J, Zheng G, Xiong T, Zhang Q, Zhao J, Li Y. ACS Catal. 2016; 6: 3674
- 15f Pouambeka TW, Zhang G, Zheng G.-F, Xu G.-X, Zhang Q, Xiong T. Org. Chem. Front. 2017; 4: 1420
- 15g Sun J, Zheng G, Zhang Q, Wang Y, Yang S, Li Y. Org. Lett. 2017; 19: 3767
- 15h Yang S, Wang L, Zhang H, Liu C, Zhang L, Wang X, Zhang G, Li Y, Zhang Q. ACS Catal. 2019; 9: 716
- 15i Wang L, Wang X, Zhang G, Yang S, Li Y, Zhang Q. Org. Chem. Front. 2019; 6: 2934
- 15j Qin T, Lv G, Meng Q, Zhang G, Xiong T, Zhang Q. Angew. Chem. Int. Ed. 2021; 60: 25949
- 15k Zheng G, Li Y, Han J, Xiong T, Zhang Q. Nat. Commun. 2015; 6: 7011
- 16a Kaneko K, Yoshino T, Matsunaga S, Kanai M. Org. Lett. 2013; 15: 2502
- 16b Zhang B, Studer A. Org. Lett. 2014; 16: 1790
- 16c Wang W, Liu L, Chang W, Li J. Chem. Eur. J. 2018; 24: 8542
- 16d Reddy CR, Prajapti SK, Ranjan R. Org. Lett. 2018; 20: 3128
- 16e Xiao H, Shen H, Zhu L, Li C. J. Am. Chem. Soc. 2019; 141: 11440
- 16f Kwon Y, Wang Q. Org. Lett. 2020; 22: 4141
- 17a Gao M, Li Y, Gan Y, Xu B. Angew. Chem. Int. Ed. 2015; 54: 8795
- 17b Gao M, Xu B. Org. Lett. 2016; 18: 4746
- 17c Li Y, Gao M, Liu B, Xu B. Org. Chem. Front. 2017; 4: 445
- 17d Gao M, Zhou K, Xu B. Adv. Synth. Catal. 2019; 361: 2031
- 17e Gao M, Gan Y, Xu B. Org. Lett. 2019; 21: 7435
- 17f Li Y, Zhang K, Gao M, Jiang Z, Liu J, Ma Y, Wang H, Tan Q, Xiao J, Xu B. Org. Biomol. Chem. 2019; 17: 5509
- 17g Zhu Y, Liu T, Liu B, Shi H, Tan Q, Xu B. Org. Chem. Front. 2022; 8: 676
- 17h Gao M, Ye R, Shen W, Xu B. Org. Biomol. Chem. 2018; 16: 2602
- 18a Ager DJ, Prakash I, Schaad DR. Chem. Rev. 1996; 96: 835
- 18b Bergmeier SC. Tetrahedron 2000; 56: 2561
- 18c Donohoe TJ, Callens CA, Flores A, Lacy AR, Rathi AH. Chem. Eur. J. 2011; 17: 58
- 19 Addison CC, Hathaway BJ, Logan N, Walke A. J. Chem. Soc. 1960; 4308
- 20a Li Y, Hartmann M, Daniliuc CG, Studer A. Chem. Commun. 2015; 51: 5706
- 20b Li Y, Zhou X, Zheng G, Zhang Q. Beilstein J. Org. Chem. 2015; 11: 2721
- 21 Biletskyi B, Kong L, Tenaglia A, Clavier H. Adv. Synth. Catal. 2021; 363: 2578
- 22 Zeng H, Li H, Jiang H, Zhu C. Sci. China: Chem. 2022; 65: 554
- 23a Wen K, Wu Z, Chen B, Chen J, Zhang W. Org. Biomol. Chem. 2018; 16: 5618
- 23b Aubineau T, Cossy J. Org. Lett. 2018; 20: 7419
- 24 Marino N, Armentano D, De Munno G, Cano J, Llore F, Julve M. Inorg. Chem. 2012; 51: 4323
- 25 Zhang L, Dolbier WR. Jr, Sheeller B, Ingold KU. J. Am. Chem. Soc. 2002; 124: 6362
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For a review on copper nitrate, see: