Synthesis 2022; 54(23): 5168-5185
DOI: 10.1055/a-1930-6979
short review

Recent Advances for Chiral Sulfoxides in Asymmetric Catalysis

Meng-Meng Yang
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
,
Si Wang
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
,
Zhi-Bing Dong
a   School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
b   Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
c   Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, P. R. China
› Author Affiliations
The financial support from the Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University (2020ZD02), Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University (PT012101), State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2021-06), Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University (202203504), and the Innovation Fund of Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology (GCX202102) are greatly appreciated.


Dedicated to Prof. Dr. Carsten Bolm at RWTH and Prof. Dr. Shu Kobayashi at the University of Tokyo.

Abstract

Chiral sulfoxide is considered to be an ideal candidate ligand for transition-metal-catalyzed asymmetric reactions due to its ease of synthesis, stability, and exceptional S-stereological orientation control. This paper reviews the different types of asymmetrical reactions with chiral sulfoxide ligands in recent years, as well as a discussion of efficient methods for the preparation of some enantiomerically pure sulfoxides.

1 Introduction

2 Chiral Sulfoxides as Ligands in Metal-Catalyzed Asymmetric Catalysis

3 Synthesis of Chiral Sulfoxides

4 Conclusions



Publication History

Received: 13 June 2022

Accepted after revision: 25 August 2022

Accepted Manuscript online:
25 August 2022

Article published online:
27 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
  • 2 Trost BM. Acc. Chem. Res. 2002; 35: 695
    • 3a Noyori R. Adv. Synth. Catal. 2003; 345: 15
    • 3b Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
  • 4 Fache F, Schulz E, Tommasino ML, Lemaire M. Chem. Rev. 2000; 100: 2159
  • 5 Thomas R, Shoemaker CB, Eriks K. Acta Crystallogr. 1966; 21: 12
  • 6 Davies AR, Einstein FW. B, Farrell NP, James BR, McMillan RS. Inorg. Chem. 1978; 17: 1965
  • 7 Cao M.-L, Zhu J.-L, Zhi Z.-L, Ye B.-H, Yao S.-Y, Zhang X.-L. Chin. J. Chem. 2021; 39: 1483
  • 8 De Risi C, Ferraro L, Pollini GP, Tanganelli S, Valente F, Veronese AC. Bioorg. Med. Chem. 2008; 16: 9904
  • 9 Ludwig G, Kaluderovic GN, Ruffer T, Bette M, Korb M, Block M, Paschke R, Lang H, Steinborn D. Dalton Trans. 2013; 42: 3771
  • 10 Rafique W, Kramer V, Pardo T, Smits R, Spilhaug MM, Hoepping A, Savio E, Engler H, Kuljs R, Amaral H, Riss PJ. ACS Omega 2018; 3: 7567
  • 11 Gupta NK, Sengupta A. J. Radioanal. Nucl. Chem. 2017; 311: 1729
  • 12 Gupta NK, Sengupta A. Sep. Sci. Technol. 2018; 54: 1312
  • 13 Wojaczyńska E, Wojaczyński J. Chem. Rev. 2020; 120: 4578
  • 14 Fernández I, Khiar N. Chem. Rev. 2003; 103: 3651
  • 15 Sipos G, Drinkel EE, Dorta R. Chem. Soc. Rev. 2015; 44: 3834
  • 16 Pellissier H. Tetrahedron 2007; 63: 1297
  • 17 James BR, McMillan RS, Reimer KJ. J. Mol. Catal. 1976; 1: 439
  • 18 Otocka S, Kwiatkowska M, Madalińska L, Kiełbasiński P. Chem. Rev. 2017; 117: 4147
  • 19 Li Y, Xu M.-H. Chem. Commun. 2014; 50: 3771
  • 20 Jia T, Wang M, Liao J. In Sulfur Chemistry . Jiang X. Springer International; Switzerland: 2019: 399
    • 21a Sierra MA, de la Torre MC. ACS Omega 2019; 4: 12983
    • 21b Clavier H, Pellissier H. Adv. Synth. Catal. 2012; 354: 3347
    • 22a Leroux FR, Panossian A, Augros D. C. R. Chim. 2017; 20: 682
    • 22b Margalef J, Biosca M, de la Cruz Sánchez P, Faiges J, Pàmies O, Diéguez M. Coord. Chem. Rev. 2021; 446: 214120
    • 22c Allen JV, Bower JF, Williams JM. J. Tetrahedron: Asymmetry 1994; 5: 1895
  • 23 Du L, Cao P, Xing J, Lou Y, Jiang L, Li L, Liao J. Angew. Chem. Int. Ed. 2013; 52: 4207
  • 24 Kondo H, Yu F, Yamaguchi J, Liu G, Itami K. Org. Lett. 2014; 16: 4212
  • 25 Cheng H.-G, Feng B, Chen L.-Y, Guo W, Yu X.-Y, Lu L.-Q, Chen J.-R, Xiao W.-J. Chem. Commun. 2014; 50: 2873
  • 26 Chen L.-Y, Yu X.-Y, Chen J.-R, Feng B, Zhang H, Qi Y.-H, Xiao W.-J. Org. Lett. 2015; 17: 1381
  • 27 Alvarado-Beltran I, Lozano González M, Escudié Y, Maerten E, Saffon-Merceron N, Fabing I, Alvarez Toledano C, Baceiredo A. Tetrahedron 2016; 72: 1662
  • 28 Zhang M, Zhao M, Zheng P, Zhang H, Zhao X. J. Fluorine Chem. 2016; 189: 13
  • 29 Ammann SE, Liu W, White MC. Angew. Chem. Int. Ed. 2016; 55: 9571
  • 30 Zhao M, Tian Y, Zhao X. Synlett 2017; 28: 1801
  • 31 Liu W, Ali SZ, Ammann SE, White MC. J. Am. Chem. Soc. 2018; 140: 10658
  • 32 Bunno Y, Tsukimawashi Y, Kojima M, Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 2663
  • 33 Chen S.-S, Wu M.-S, Han Z.-Y. Angew. Chem. Int. Ed. 2017; 56: 6641
  • 34 He R, Huo X, Zhao L, Wang F, Jiang L, Liao J, Zhang W. J. Am. Chem. Soc. 2020; 142: 8097
  • 35 Xue F, Wang D, Li X, Wan B. Org. Biomol. Chem. 2013; 11: 7893
  • 36 Chen J, Chen J, Lang F, Zhang X, Cun L, Zhu J, Deng J, Liao J. J. Am. Chem. Soc. 2010; 132: 4552
  • 37 Dornan PK, Leung PL, Dong VM. Tetrahedron 2011; 67: 4378
  • 38 Thaler T, Guo L.-N, Steib AK, Raducan M, Karaghiosoff K, Mayer P, Knochel P. Org. Lett. 2011; 13: 3182
  • 39 Qi W.-Y, Zhu T.-S, Xu M.-H. Org. Lett. 2011; 13: 3410
  • 40 Xue F, Li X, Wan B. J. Org. Chem. 2011; 76: 7256
  • 41 Xue F, Wang D, Li X, Wan B. J. Org. Chem. 2012; 77: 3071
  • 42 Khiar N, Salvador Á, Valdivia V, Chelouan A, Alcudia A, Álvarez E, Fernández I. J. Org. Chem. 2013; 78: 6510
  • 43 Li Y.-G, Li L, Yang M.-Y, Qin H.-L, Kantchev EA. B. RSC Adv. 2015; 5: 5250
  • 44 Chen Q, Li L, Guo F, Mao Z. Tetrahedron 2016; 72: 2632
  • 45 Wang D, Cao P, Wang B, Jia T, Lou Y, Wang M, Liao J. Org. Lett. 2015; 17: 2420
  • 46 Wang M, Wei J, Fan Q, Jiang X. Tetrahedron 2016; 72: 2671
  • 47 Yang T, Zhang Y, Cao P, Wang M, Li L, Li D, Liao J. Tetrahedron 2016; 72: 2707
  • 48 Wen Q, Zhang L, Xiong J, Zeng Q. Eur. J. Org. Chem. 2016; 2016: 5360
  • 49 Yuan S, Zeng Q, Wang J, Zhou L. ARKIVOC 2017; (v): 32
  • 50 Borrego LG, Recio R, Alcarranza M, Khiar N, Fernández I. Adv. Synth. Catal. 2018; 360: 1273
  • 51 Zhang L, Tan M, Zhou L, Zeng Q. Tetrahedron Lett. 2018; 59: 2778
  • 52 Hoshi T, Fujita M, Matsushima S, Hagiwara H, Suzuki T. Chem. Lett. 2018; 47: 800
  • 53 Zhao G.-Z, Foster D, Sipos G, Gao P, Skelton BW, Sobolev AN, Dorta R. J. Org. Chem. 2018; 83: 9741
  • 54 Xue F, Liu Q, Zhu Y, Qing Y, Wan B. RSC Adv. 2019; 9: 25377
  • 55 Borrego LG, Recio R, Álvarez E, Sánchez-Coronilla A, Khiar N, Fernández I. Org. Lett. 2019; 21: 6513
  • 56 Nikol A, Zhang Z, Chelouan A, Falivene L, Cavallo L, Herrera A, Heinemann FW, Escalona A, Frieß S, Grasruck A, Dorta R. Organometallics 2020; 39: 1348
  • 57 Wan B, Liu Q, Xue F, Zhu Y, Huang Y, Ge J. Synthesis 2020; 52: 1498
  • 58 Petra DG. I, Kamer PC. J, Spek AL, Schoemaker HE, van Leeuwen PW. N. M. J. Org. Chem. 2000; 65: 3010
  • 59 Tang L, Wang Q, Wang J, Lin Z, Wang X, Cun L, Yuan W, Zhu J, Liao J, Deng J. Tetrahedron Lett. 2012; 53: 3839
  • 60 Bolm C, Simić O. J. Am. Chem. Soc. 2001; 123: 3830
  • 61 Hiroi K, Watanabe K, Abe I, Koseki M. Tetrahedron Lett. 2001; 42: 7617
  • 62 Watanabe K, Hirasawa T, Hiroi K. Chem. Pharm. Bull. 2002; 50: 372
  • 63 Wang X, Wang B, Yin X, Yu W, Liao Y, Ye J, Wang M, Hu L, Liao J. Angew. Chem. Int. Ed. 2019; 58: 12264
  • 64 Yin X, Chen B, Qiu F, Wang X, Liao Y, Wang M, Lei X, Liao J. ACS Catal. 2020; 10: 1954
  • 65 Wang L, Chen M, Zhang P, Li W, Zhang J. J. Am. Chem. Soc. 2018; 140: 3467
  • 66 Jerhaoui S, Djukic J.-P, Wencel-Delord J, Colobert F. ACS Catal. 2019; 9: 2532
  • 67 Chen B, Cao P, Yin X, Liao Y, Jiang L, Ye J, Wang M, Liao J. ACS Catal. 2017; 7: 2425
  • 68 Zhang Y, Wang M, Cao P, Liao J. Acta Chim. Sin. 2017; 75: 794
  • 69 Wang B, Wang X, Yin X, Yu W, Liao Y, Ye J, Wang M, Liao J. Org. Lett. 2019; 21: 3913
  • 70 Liao Y, Yin X, Wang X, Yu W, Fang D, Hu L, Wang M, Liao J. Angew. Chem. Int. Ed. 2020; 59: 1176
  • 71 Ye J, Liao Y, Huang H, Liu Y, Fang D, Wang M, Hu L, Liao J. Chem. Sci. 2021; 12: 3032
  • 72 Lin H, Jiao W, Chen Z, Han J, Fang D, Wang M, Liao J. Org. Lett. 2022; 24: 2197
  • 73 Proietti G, Kuzmin J, Temerdashev AZ, Dinér P. J. Org. Chem. 2021; 86: 17119
  • 74 Trost BM, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
  • 75 Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
  • 76 Xu N, Zhu J, Wu Y.-Q, Zhang Y, Xia J.-Y, Zhao Q, Lin G.-Q, Yu H.-L, Xu J.-H. Org. Process Res. Dev. 2020; 24: 1124
  • 77 Li Z.-Z, Wen AH, Yao S.-Y, Ye B.-H. Inorg. Chem. 2015; 54: 2726
  • 78 Chuo TH, Boobalan R, Chen C. ChemistrySelect 2016; 1: 2174
  • 79 Capozzi MA. M, Terraneo G, Cavallo G, Cardellicchio C. Tetrahedron 2015; 71: 4810
  • 80 Bhadra S, Akakura M, Yamamoto H. J. Am. Chem. Soc. 2015; 137: 15612
  • 81 Carrasco CJ, Montilla F, Galindo A. Molecules 2018; 23: 1595
  • 82 Liu W, Yang W, Zhu J, Guo Y, Wang N, Ke J, Yu P, He C. ACS Catal. 2020; 10: 7207