Synthesis 2022; 54(20): 4539-4550
DOI: 10.1055/a-1874-6399
paper

5-Amino-Substituted 2-Methoxy-1,3,4-oxadiazoles as Common Precursors Toward 1,3,4-Oxadiazol-2(3H)-ones and 1,2,4-Triazolidine-3,5-diones

Dolnapa Yamano
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
,
Subin Jaita
b   Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Chiang Rai, Chiang Rai 57120, Thailand
c   Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
,
Surat Hongsibsong
d   School of Health Science Research, Research Institute for Health Science, Chiang Mai University, Chiang Mai 50200, Thailand
,
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
e   Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
,
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
e   Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
,
Mookda Pattarawarapan
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
c   Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
e   Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
› Author Affiliations
Financial support for this study was provided by The Thailand Research Fund through the Royal Golden Jubilee (RGJ) Ph.D. Programme (Grant No. PHD/0023/2559 to D.Y.). This research work was partially supported by Chiang Mai University, Thailand.


Abstract

The divergent synthesis of two different classes of azole derivatives using 5-amino-substituted 2-methoxy-1,3,4-oxadiazoles as common substrates is reported. Depending on the reaction time and temperature, alkylation of oxadiazoles with excess alkyl halides proceeds with high regioselectivity toward 1,3,4-oxadiazolones and 1,2,4-triazolidine-3,5-diones. This operationally simple protocol enables rapid access to a diverse set of isomeric azoles using minimum synthetic steps and easily accessible oxadiazole key precursors.

Supporting Information



Publication History

Received: 19 May 2022

Accepted after revision: 13 June 2022

Accepted Manuscript online:
13 June 2022

Article published online:
20 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1b Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
    • 1c Lang DK, Kaur R, Arora R, Saini B, Arora S. Anti-Cancer Agents Med. Chem. 2020; 20: 2150
    • 2a Ahsan MJ. Mini-Rev. Med. Chem. 2022; 22: 164
    • 2b Vaidya A, Pathak D, Shah K. Chem. Biol. Drug Des. 2021; 97: 572
    • 2c Chawla G, Naaz B, Siddiqui AA. Mini-Rev. Med. Chem. 2018; 18: 216
    • 2d Bhaumik A. Eur. J. Biomed. Pharm. Sci. 2016; 3: 133
    • 2e Bajaj S, Asati V, Singh J, Roy PP. Eur. J. Med. Chem. 2015; 97: 124
    • 2f De Bruycker K, Billiet S, Houck HA, Chattopadhyay S, Winne JM, Du Prez FE. Chem. Rev. 2016; 116: 3919
  • 3 Muccioli GG, Labar G, Lambert DM. ChemBioChem 2008; 9: 2704
  • 4 Patel JZ, Parkkari T, Laitinen T, Kaczor AA, Saario SM, Savinainen JR, Navia-Paldanius D, Cipriano M, Leppanen J, Koshevoy IO, Poso A, Fowler CJ, Laitinen JT, Nevalainen T. J. Med. Chem. 2013; 56: 8484
  • 5 Bi F, Song D, Qin Y, Liu X, Teng Y, Zhang N, Zhang P, Zhang N, Ma S. Bioorg. Med. Chem. 2019; 27: 3179
  • 6 Khedkar NR, Irlapatti NR, Dadke D, Kanoje V, Shaikh Z, Karche V, Shinde V, Deshmukh G, Patil A, Jachak S, Phukan S, Kizhakinagath PA, Gholve M, Bhankhede T, Daler J, Nemade HN, Budhe S, Pareek H, Yeshodharan R, Gupta R, Kalia A, Pandey D, Wagh A, Kumar S, Patil V, Modi D, Sharma N, Ahirrao P, Mehta M, Kumar H, Nigade P, Tamane K, Mallurwar S, Kuldharan S, Pawar S, Vishwase G, Bokan S, Singh M, Naik K, Ingawale S, Shankar R, Kamalakannan P, Venugopal S, George SK, Padiya KJ, Nemmani KV. S, Gundu J, Bhonde M, Narasimham L, Sindkhedkar M, Shah C, Sinha N, Sharma S, Bakhle D, Kamboj RK, Palle VP. J. Med. Chem. 2021; 64: 17004
  • 7 Ziarani GM, Mohajer F, Moradi R, Mofatehnia P. Curr. Org. Synth. 2019; 16: 953
    • 8a Seguchi K, Tanaka S. Recent Res. Dev. Org. Bioorg. Chem. 1997; 1: 15
    • 8b Hall IH, Wong OT, Simlot R, Miller MC. III, Izydore RA. Anticancer Res. 1992; 12: 1355
    • 8c Simlot R, Izydore RA, Wong OT, Hall IH. J. Pharm. Sci. 1994; 83: 367
    • 8d Adibi H, Abiri R, Mallakpour S, Zolfigol MA, Majnooni MB. J. Rep. Pharm. Sci. 2012; 1: 79
  • 9 Potin D, Launay M, Nicolai E, Fabreguette M, Malabre P, Caussade F, Besse D, Skala S, Stetsko DK, Todderud G, Beno BR, Cheney DL, Chang CJ, Sheriff S, Hollenbaugh DL, Barrish JC, Iwanowicz EJ, Suchard SJ, Dhar TG. M. Bioorg. Med. Chem. Lett. 2005; 15: 1161
  • 10 Li JJ, Chao H.-G, Wang H, Tino JA, Lawrence RM, Ewing WR, Ma Z, Yan M, Slusarchyk D, Seethala R, Sun H, Li D, Burford NT, Stoffel RH, Salyan ME, Li CY, Witkus M, Zhao N, Rich A, Gordon DA. J. Med. Chem. 2004; 47: 1704
  • 11 Cho W, Koo JY, Park Y, Oh K, Lee S, Song J.-S, Bae MA, Lim D, Lee D.-S, Park SB. J. Med. Chem. 2017; 60: 170
  • 12 Nguyen C, Teo J.-L, Matsuda A, Eguchi M, Chi EY, Henderson WR. Jr, Kahn M. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 1169
  • 13 Romine JL, Martin SW, Meanwell NA, Gribkoff VK, Boissard CG, Dworetzky SI, Natale J, Moon S, Ortiz A, Yeleswaram S, Pajor L, Gao Q, Starrett JE. Jr. J. Med. Chem. 2007; 50: 528
    • 14a Mazouz F, Gueddari S, Burstein C, Mansuy D, Milcent R. J. Med. Chem. 1993; 36: 1157
    • 14b Milcent R, Barbier G, Yver B, Mazouz F. J. Heterocycl. Chem. 1991; 28: 1511
    • 14c Lochead A, Galli F, Jegham S, Nedelec A, George P. Synth. Commun. 1999; 29: 799
    • 15a Alakurtti S, Heiska T, Kiriazis A, Sacerdoti-Sierra N, Jaffe CL, Yli-Kauhaluoma J. Bioorg. Med. Chem. 2010; 18: 1573
    • 15b Chai W, Chang Y, Buynak JD. Tetrahedron Lett. 2012; 53: 3514
    • 15c Mallakpour S, Rafiee Z. Synlett 2007; 1255
    • 15d Mallakpour S, Rafiee Z. Synth. Commun. 2007; 37: 1927
    • 15e Vlaminck L, Van de Voorde B, Du Prez FE. Green Chem. 2017; 19: 5659
    • 15f Chandrasekhar B, Kumar GB, Mallela S, Bhirud SB. Org. Prep. Proced. Int. 2004; 36: 469
  • 16 Wet-osot S, Phakhodee W, Pattarawarapan M. J. Org. Chem. 2017; 82: 9923
  • 18 Patel SS, Chandna N, Kumar S, Jain N. Org. Biomol. Chem. 2016; 14: 5683
    • 19a Werber G, Buccheri F, Gentile M. J. Heterocycl. Chem. 1977; 14: 1263
    • 19b Weaver GW. In Science of Synthesis, Vol. 13. Storr RC, Gilchrist TL. Thieme; Stuttgart: 2004: 219
    • 20a Ladani GG, Patel MP. New J. Chem. 2015; 39: 9848
    • 20b Ha J.-E, Yang S.-J, Gong Y.-D. ACS Comb. Sci. 2018; 20: 82
    • 20c Nissink JW. M, Bazzaz S, Blackett C, Clark MA, Collingwood O, Disch JS, Gikunju D, Goldberg K, Guilinger JP, Hardaker E, Hennessy EJ, Jetson R, Keefe AD, McCoull W, McMurray L, Olszewski A, Overman R, Pflug A, Preston M, Rawlins PB, Rivers E, Schimpl M, Smith P, Truman C, Underwood E, Warwicker J, Winter-Holt J, Woodcock S, Zhang Y. J. Med. Chem. 2021; 64: 3165
    • 20d Yang S.-J, Choe J.-H, Abdildinova A, Gong Y.-D. ACS Comb. Sci. 2015; 17: 732
    • 20e Yang S.-J, Lee S.-H, Kwak H.-J, Gong Y.-D. J. Org. Chem. 2013; 78: 438
    • 21a Wilkerson CJ, Greene FD. J. Org. Chem. 1975; 40: 3112
    • 21b Golfier M, Milcent R. Tetrahedron Lett. 1974; 3871
    • 21c Golfier M, Milcent R. Bull. Soc. Chim. Fr. 1973; 254
    • 22a Klapoetke TM, Krumm B, Riedelsheimer C, Stierstorfer J, Unger CC, Wurzenberger MH. H. Eur. J. Org. Chem. 2020; 4916
    • 22b Gostevskii BA, Albanov AI, Vashchenko AV, Lazareva NF. Chem. Heterocycl. Compd. 2020; 56: 1015
  • 23 CCDC 2168575 (3e) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.