Synlett 2022; 33(17): 1688-1694
DOI: 10.1055/a-1872-0179
synpacts

Versatile OPiv-Supported Organozinc Reagents for Transition-Metal-Catalyzed Cross-Couplings

Xingchen Liu
,
Jixin Wang
,
Jie Li
Support by the start-up grant (No. GJ10900220) of Soochow University is gratefully acknowledged.


Dedicated to Prof. Ei-ichi Negishi and Paul Knochel for their brilliant contributions in organic chemistry

Abstract

As one of the most important indispensable tools, organozinc-reagents-based Negishi cross-couplings have been extensively utilized for the synthesis of biologically active molecules and feedstock commodity chemicals. However, the use of air- and moisture-sensitive organozinc halides and expensive palladium catalysis still remain drawbacks. Recently, user-friendly solid OPiv-supported C–Zn, Si–Zn reagents with enhanced air and moisture stability have been prepared, which displayed superior reactivity in various transition-metal-catalyzed cross-couplings, especially in the earth-abundance cobalt and nickel catalysis. Herein, we summarized the recent advances and our research work in the field of the preparation and application of solid organozinc pivalates in the present short review.

1 Introduction

2 Development of Organozinc Pivalates in Two-Component Cross-Couplings

3 Development of Organozinc Pivalates in Three-Component Cross-Couplings

4 Conclusion and Outlook



Publication History

Received: 23 May 2022

Accepted after revision: 09 June 2022

Accepted Manuscript online:
09 June 2022

Article published online:
20 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Transition Metals for Organic Synthesis, 2nd ed. . Beller M, Bolm C. Wiley-VCH; Weinheim: 2004
    • 1b Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
    • 1c Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014
    • 3a Negishi E. Angew. Chem. Int. Ed. 2011; 50: 6738
    • 3b Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
    • 4a Volochnyuk DM, Gorlova AO, Grygorenko OO. Chem. Eur. J. 2021; 27: 15277
    • 4b Devendar P, Qu R.-Y, Kang W.-M, He B, Yang G.-F. J. Agric. Food. Chem. 2018; 66: 8914
    • 4c Almond-Thynne J, Blakemore DC, Pryde DC, Spivey AC. Chem. Sci. 2017; 8: 40
    • 4d Molander GA, Canturk B. Angew. Chem. Int. Ed. 2009; 48: 9240
  • 5 Bernhardt S, Manolikakes G, Kunz T, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9205
  • 6 Piller FM, Appukkuttan P, Gavryushin A, Helm M, Knochel P. Angew. Chem. Int. Ed. 2008; 47: 6802
    • 7a Stathakis CI, Bernhardt S, Quint V, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 9428
    • 7b Stathakis CI, Manolikakes SM, Knochel P. Org. Lett. 2013; 15: 1302
  • 8 Manolikakes SM, Ellwart M, Stathakis CI, Knochel P. Chem. Eur. J. 2014; 20: 12289
  • 9 Colombe JR, Bernhardt S, Stathakis C, Buchwald SL, Knochel P. Org. Lett. 2013; 15: 5754
  • 10 Greshock TJ, Moore KP, McClain RT, Bellomo A, Chung CK, Dreher SD, Kutchukian PS, Peng Z, Davies IW, Vachal P, Ellwart M, Manolikakes SM, Knochel P, Nantermet PG. Angew. Chem. Int. Ed. 2016; 55: 13714
  • 11 Hernán-Gómez A, Herd E, Hevia E, Kennedy AR, Knochel P, Koszinowski K, Manolikakes SM, Mulvey RE, Schnegelsberg C. Angew. Chem. Int. Ed. 2014; 53: 2706
    • 12a Lutter FH, Grassl S, Grokenberger L, Hofmayer MS, Chen Y.-H, Knochel P. ChemCatChem 2019; 11: 5188
    • 12b Hammann JM, Hofmayer MS, Lutter FH, Thomas L, Knochel P. Synthesis 2017; 49: 3887
    • 12c Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 12d Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
  • 13 Hammann JM, Lutter FH, Haas D, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 1082
    • 14a Nassar Y, Rodier F, Ferey V, Cossy J. ACS Catal. 2021; 11: 5736
    • 14b Hu Y, Hu B, Liu X, Ren Z, Li J. Org. Biomol. Chem. 2021; 19: 7754
  • 15 Li J, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 11436
  • 16 Hofmayer MS, Lutter FH, Grokenberger L, Hammann JM, Knochel P. Org. Lett. 2019; 21: 36
  • 17 Chen Y.-H, Graβl S, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 1108
  • 18 Lutter FH, Grokenberger L, Hofmayer MS, Knochel P. Chem. Sci. 2019; 10: 8241
  • 19 Dong Z.-B, Balkenhohl M, Tan E, Knochel P. Org. Lett. 2018; 20: 7581
  • 20 Liu X.-G, Zhou C.-J, Lin E, Han X.-L, Zhang S.-S, Li Q, Wang H. Angew. Chem. Int. Ed. 2018; 57: 13096
  • 21 Li J, Tan E, Keller N, Chen Y.-H, Zehetmaier PM, Jakowetz AC, Bein T, Knochel P. J. Am. Chem. Soc. 2019; 141: 98
  • 22 Ellwart M, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 10662
  • 23 Chen Y.-H, Ellwart M, Toupalas G, Ebe Y, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 4612
  • 24 Chen Y.-H, Tüllmann CP, Ellwart M, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 9236
  • 25 Tüllmann CP, Chen Y.-H, Schuster RJ, Knochel P. Org. Lett. 2018; 20: 4601
  • 26 Also see a solid (1H-tetrazol-5-yl)zinc pivalate: Tuellmann CP, Steiner S, Knochel P. Synthesis 2020; 52: 2357

    • Also see the applications of alkynylzinc pivalates in cobalt catalysis:
    • 27a Tomas L, Lutter FH, Hofmayer MS, Karaghiosoff K, Knochel P. Org. Lett. 2018; 20: 2441
    • 27b Hammann JM, Thomas L, Chen Y.-H, Haas D, Knochel P. Org. Lett. 2017; 19: 3847
    • 29a Orlandi M, Hilton MJ, Yamamoto E, Toste FD, Sigman MS. J. Am. Chem. Soc. 2017; 139: 12688
    • 29b Saini V, Sigman MS. J. Am. Chem. Soc. 2012; 134: 11372
    • 29c Ikeda Y, Nakamura T, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2002; 124: 6514
    • 30a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 30b O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 30c Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
  • 31 Cheng X, Liu X, Wang S, Hu Y, Hu B, Lei A, Li J. Nat. Commun. 2021; 12: 4366
  • 32 Bähr S, Xue W, Oestreich M. ACS Catal. 2019; 9: 16
  • 33 Troegel D, Stohrer J. Coord. Chem. Rev. 2011; 255: 1440
    • 34a Ni D, Brown MK. ACS Catal. 2021; 11: 1858
    • 34b Zhao B, Li Y, Li H, Belal M, Zhu L, Yin G. Sci. Bull. 2020; 570
    • 34c Liu Z, Chen J, Lu H.-X, Li X, Gao Y, Coombs JR, Goldfogel MJ, Engle KM. Angew. Chem. Int. Ed. 2019; 58: 17068
  • 35 Feng J.-J, Mao W, Zhang L, Oestreich M. Chem. Soc. Rev. 2021; 50: 2010
    • 36a Xue W, Shishido R, Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 12141
    • 36b Chu CK, Liang Y, Fu GC. J. Am. Chem. Soc. 2016; 138: 6404
    • 36c Boebel TA, Hartwig JF. Organometallics 2008; 27: 6013
  • 37 Wang J, Duan Z, Liu X, Dong S, Chen K, Li J. Angew. Chem. Int. Ed. 2022; 61: e202202379