Synlett 2022; 33(15): 1527-1531
DOI: 10.1055/a-1860-3405
letter

Amine Oxidation by Electrochemically Generated Peroxodicarbonate

Ann-Katrin Seitz
a   Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
,
Tim van Lingen
a   Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
,
Marco Dyga
a   Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
,
Philipp J. Kohlpaintner
b   Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
,
b   Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
,
Lukas J. Gooßen
a   Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
› Author Affiliations
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC-2033–390677874—RESOLV, FOR 2982/1—UNODE, BMBF and the state of NRW (Center of Solvation Science ‘ZEMOS’).


Abstract

The N-oxidation of tertiary amines was achieved by using electrochemically generated peroxodicarbonate solutions as sustainable oxidizers. The presence of EDTA and 2,2,2-trifluoroacetophenone as a mediator was found to be crucial for converting water-insoluble substrates. Various tertiary amines were converted into their corresponding N-oxides in yields of up to 98%. The scope includes economically important surfactants and potential platform oxidizers.

Supporting Information



Publication History

Received: 30 March 2022

Accepted after revision: 24 May 2022

Accepted Manuscript online:
24 May 2022

Article published online:
15 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 2 Sanderson H, Tibazarwa C, Greggs W, Versteeg DJ, Kasai Y, Stanton K, Sedlak RI. Risk Anal. 2009; 29: 857
    • 3a VanRheenen V, Kelly RC, Cha DY. Tetrahedron Lett. 1976; 17: 1973
    • 3b Ley SV, Norman J, Griffith WP, Marsden SP. Synthesis 1994; 1994: 639
    • 3c Chen DX, Ho CM, Rudy Wu QY, Wu PR, Wong FM, Wu W. Tetrahedron Lett. 2008; 49: 4147
    • 3d Moore PW, Read CD. G, Bernhardt PV, Williams CM. Chem. Eur. J. 2018; 24: 4556
    • 3e Yates MH. Tetrahedron Lett. 1997; 38: 2813
    • 3f Schmidt A.-KC, Stark CB. W. Org. Lett. 2011; 13: 4164
    • 3g Tran LD, Roane J, Daugulis O. Angew. Chem. Int. Ed. 2013; 52: 6043
    • 3h Katayev D, Pfister KF, Wendling T, Gooßen LJ. Chem. Eur. J. 2014; 20: 9902
    • 3i Pichette Drapeau M, Bahri J, Lichte D, Gooßen LJ. Angew. Chem. Int. Ed. 2019; 58: 892
    • 4a Mosher HS, Turner L, Carlsmith A. Org. Synth. 1953; 33: 79
    • 4b Swern D. Chem. Rev. 1949; 45: 1
    • 4c Cymerman CJ, Purushothaman KK. J. Org. Chem. 1970; 35: 1721
  • 5 Ferrer M, Sánchez-Baeza F, Messeguer A. Tetrahedron 1997; 53: 15877

    • For examples of transition metal catalysts, see:
    • 6a Rout L, Punniyamurthy T. Adv. Synth. Catal. 2005; 347: 1958
    • 6b Copéret C, Adolfsson H, Khuong T.-AV, Yudin AK, Sharpless KB. J. Org. Chem. 1998; 63: 1740
    • 6c Thellend A, Battioni P, Sanderson W, Mansuy D. Synthesis 1997; 1997: 1387

    • For examples of organocatalysts, see:
    • 6d Payne GB, Deming PH, Williams PH. J. Org. Chem. 1961; 26: 659
    • 6e Bergstad K, Bäckvall J.-E. J. Org. Chem. 1998; 63: 6650
    • 6f Limnios D, Kokotos CG. Chem. Eur. J. 2014; 20: 559
    • 6g Hartman T, Šturala J, Cibulka R. Adv. Synth. Catal. 2015; 357: 3573

    • For an example of a mediator, see:
    • 6h Balagam B, Richardson DE. Inorg. Chem. 2008; 47: 1173
    • 7a Barnes KK, Mann CK. J. Org. Chem. 1967; 32: 1474
    • 7b Smith PJ, Mann CK. J. Org. Chem. 1969; 34: 1821
    • 7c Masui M, Sayo H, Tsuda Y. J. Chem. Soc. B 1968; 973
    • 7d Masui M, Sayo H. J. Chem. Soc. B 1971; 1593
    • 7e Adenier A, Chehimi MM, Gallardo I, Pinson J, Vilà N. Langmuir 2004; 20: 8243
    • 8a Okimoto M, Takahashi Y, Numata K, Nagata Y, Sasaki G. Synth. Commun. 2005; 35: 1989
    • 8b Jones AM, Banks CE. Beilstein J. Org. Chem. 2014; 10: 3056
    • 8c Shono T, Hamaguchi H, Matsumura Y. J. Am. Chem. Soc. 1975; 97: 4264

      For recent articles, see:
    • 10a Izgorodin A, Izgorodina E, MacFarlane DR. Energy Environ. Sci. 2012; 5: 9496
    • 10b Viswanathan V, Hansen HA, Nørskov JK. J. Phys. Chem. Lett. 2015; 6: 4224
    • 10c Kuttassery F, Mathew S, Sagawa S, Remello SN, Thomas A, Yamamoto D, Onuki S, Nabetani Y, Tachibana H, Inoue H. ChemSusChem 2017; 10: 1909
    • 10d Shi X, Siahrostami S, Li G.-L, Zhang Y, Chakthranont P, Studt F, Jaramillo TF, Zheng X, Nørskov JK. Nat. Commun. 2017; 8: 701

    • For selected reviews, see:
    • 10e Jiang Y, Ni P, Chen C, Lu Y, Yang P, Kong B, Fisher A, Wang X. Adv. Energy Mater. 2018; 8: 1801909
    • 10f Shi X, Back S, Gill TM, Siahrostami S, Zheng X. Chem 2021; 7: 38
    • 10g Mavrikis S, Perry SC, Leung PK, Wang L, Ponce de León C. ACS Sustainable Chem. Eng. 2021; 9: 76
    • 11a Jones CW. RSC Clean Technology Monographs: Applications of Hydrogen Peroxide and Derivatives. Royal Society of Chemistry; Cambridge: 1999. DOI: 10.1039/9781847550132
    • 11b Wendt H, Kreysa G. Electrochemical Engineering Science and Technology in Chemical and Other Industries. Springer; Berlin: 1999
    • 12a von Hansen A, Constam EJ. Z. Elektrochem. 1896; 3: 137
    • 12b von Hansen A. Z. Elektrochem. 1897; 445
  • 13 Tanatar S. Ber. Dtsch. Chem. Ges. 1899; 32: 1544
  • 14 Dinnebier RE, Vensky S, Stephens PW, Jansen M. Angew. Chem. Int. Ed. 2002; 41: 1922

    • For reviews on the use of BDD electrodes in electroorganic synthesis, see:
    • 15a Lips S, Waldvogel SR. ChemElectroChem 2019; 6: 1649
    • 15b Waldvogel SR, Mentizi S, Kirste A. In Radicals in Synthesis III . Heinrich M, Gansäuer A. Springer; Berlin: 2012

    • For their application in the synthesis of peroxodicarbonate, see:
    • 15c Saha MS, Furuta T, Nishiki Y. Electrochem. Solid-State Lett. 2003; 6: D5
    • 15d Saha MS, Furuta T, Nishiki Y. Electrochem. Commun. 2004; 6: 201
    • 15e Chardon CP, Matthée T, Neuber R, Fryda M, Comninellis C. ChemistrySelect 2017; 2: 1037
  • 16 Page PC. B, Marken F, Williamson C, Chan Y, Buckley BR, Bethell D. Adv. Synth. Catal. 2008; 350: 1149
  • 17 Waldvogel S, Zirbes M, Neuber R, Matthée T. DE 102018128228, 2020
  • 18 Gütz C, Stenglein A, Waldvogel SR. Org. Process Res. Dev. 2017; 21: 771
  • 19 Electrosynthesis of Peroxodicarbonate An aqueous electrolyte solution (44 mL) containing K2CO3 (1.136 M), Na2CO3 (0.952 M), and KHCO3 (0.107 M) was added to a 100 mL Schott glass bottle, which was then placed in a cryostat bath (–5 °C). A temperature sensor was placed inside the electrolyte. The solution was circulated through the electrolysis system for 15 min at 50 mL/min until its temperature became constant. The target temperature of the cryostat was then set to –15 °C and the solution was electrolyzed under a circular flow (50 mL/min) using a cooled stainless-steel cathode and a BDD anode (10.8 cm² electrode surface area) at a constant current of 3.84 A (356 mA/cm²) for 1 h (1.5 F relative to CO3 2–). After the electrolysis, the concentration of peroxodicarbonate was determined by iodometric titration of a 4.0 mL aliquot against 0.1 M Na2S2O3.
    • 20a Limnios D, Kokotos CG. J. Org. Chem. 2014; 79: 4270
    • 20b Wang Z.-X, Tu Y, Frohn M, Zhang J.-R, Shi Y. J. Am. Chem. Soc. 1997; 119: 11224
  • 21 Shu L, Shi Y. J. Org. Chem. 2000; 65: 8807
  • 22 Mallat T, Bodmer M, Baiker A. Catal. Lett. 1997; 44: 95
  • 23 N-Methylmorpholine N-Oxide (2a); Typical Procedure The titrated peroxodicarbonate solution (3.4 equiv) was added to N-methylmorpholine (101 mg, 1.00 mmol) and EDTA (73.1 mg, 0.25 mmol, 0.25 equiv) in a 50 mL vial containing a Teflon-coated stirring bar. The mixture was then stirred at RT for 5 h and extracted with EtOAc (20 mL). The aqueous phase was dried by lyophilization and the resulting solid was crushed, suspended in EtOAc, and filtered. The filter cake was washed with EtOAc (4 × 20 mL) and the organic solvent was removed under reduced pressure to give a white solid; yield: 113 mg (0.97 mmol, 97%). 1H NMR (300 MHz, CDCl3): δ = 4.50–4.39 (m, 2 H), 3.81–3.72 (m, 2 H), 3.36 (td, J = 11.4, 3.7 Hz, 2 H), 3.26 (s, 3 H), 3.15–3.06 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 66.0, 61.7, 61.2. HRMS (ESI): m/z [M + H]+ calcd for C5H12NO2: 118.0863; found: 118.0863. The analytical data (NMR) matched those reported in the literature.25a
  • 24 N,N-Dimethyldodecylamine N-Oxide (2b); Typical Procedure for Lipophilic Amines The titrated peroxodicarbonate solution (3.4 equiv) was added to N,N-dimethyldodecylamine (1.00 mmol), EDTA (73.1 mg, 0.25 mmol, 0.25 equiv), and TFAP (35.5 μL, 0.25 mmol, 0.25 equiv) in a 50 mL vial containing a Teflon-coated stirring bar. The mixture was stirred at RT for 5 h and then extracted with EtOAc (5 × 20 mL). The organic solvent was removed under reduced pressure to give a white solid; yield: 226 mg (0.97 mmol, 97%); mp: 130–133 °C (Et2O). 1H NMR (300 MHz, CDCl3): δ = 3.28–3.20 (m, 2 H), 3.18 (s, 6 H), 1.95–1.81 (m, 2 H), 1.41–1.19 (m, 18 H), 0.87 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 72.1, 58.9, 32.0, 29.7 (2 C), 29.6, 29.5, 29.4 (2 C), 26.8, 24.1, 22.8, 14.2. HRMS (ESI): m/z [M + H]+ calcd for C14H32NO: 230.2484; found: 230.2487. The analytical data (NMR) matched those reported in the literature.25b
    • 25a Imada Y, Iida H, Ono S, Murahashi S.-I. J. Am. Chem. Soc. 2003; 125: 2868
    • 25b Rauchdi M, Ait Ali M, Roucoux A, Denicourt-Nowicki A. Appl. Catal., A 2018; 550: 266