Synthesis 2022; 54(19): 4129-4166
DOI: 10.1055/a-1856-5688
review

Recent Advances in Enantioselective Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes (NHCs) Containing Triazolium Motifs

a   Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, IndianOil Odisha Campus, Kharagpur Extension Centre, Mouza, Samantpuri, Bhubaneswar-751013, Odisha, India
,
a   Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, IndianOil Odisha Campus, Kharagpur Extension Centre, Mouza, Samantpuri, Bhubaneswar-751013, Odisha, India
,
b   Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India
,
a   Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, IndianOil Odisha Campus, Kharagpur Extension Centre, Mouza, Samantpuri, Bhubaneswar-751013, Odisha, India
› Author Affiliations
The authors acknowledge the Institute of Chemical Technology, Indian OilOdisha Campus (ICT-IOC), Bhubaneswar for providing necessary support. R.D. thanks the Department of Science and Technology, Science and Engineering Research Board (DST-SERB) for a Ramanujan Fellowship (SB/S2/RJN-075/2016), a Core Research Grant (CRG/2018/000782) and ICT-IOC for a start-up grant. V.D. thanks DST-SERB for a Ramanujan Fellowship (RJF/2020/000038) and the National Institute of Technology Puducherry, Karaikal, India for providing necessary research work support.


Dedicated to Prof. Paul Knochel

Abstract

N-Heterocyclic carbenes (NHCs) containing triazolium motifs have emerged as a powerful tool in organocatalysis. Recently, various NHC-catalyst-mediated organic transformations have been developed. This review aims to compile the current state of knowledge on enantioselective NHC-triazolium-catalyzed named reactions as well as introduce newly developed catalytic methods. Furthermore, this review article framework provides an excellent opportunity to highlight some of the unique applications of these catalytic procedures in the synthesis of natural products and biologically active compounds, notably the extensive processes for the preparation of substituted chiral alcohols and their derivatives. This review also provides an overview of the synthesis of chiral NHC-triazolium-catalyst libraries and their applications in catalytic enantioselective reactions.

1 Introduction

2 Synthesis of N‑Heterocyclic Carbenes Containing Triazolium Motifs

2.1 Pyrrolidine-Based Triazoliums NHCs: Px

2.2 Morpholine-Based Triazoliums NHCs: Mx

2.3 Aminoindane-Based Triazoliums NHCs: AMx

2.4 Oxazolidine-Based Heteroazoliums NHCs: Ox

2.5. Acyclic Triazoliums NHCs: Ax

3 Enantioselective Organocatalytic Reactions

3.1 Enantioselective Benzoin Reactions

3.1.1 Aldehyde–Aldehyde Homo-Benzoin Reactions

3.1.2 Aldehyde–Aldehyde Cross-Benzoin Reactions

3.1.3 Aldehyde–Ketone Cross-Benzoin Reactions

3.1.4 Aldehyde–Imine Cross-Benzoin Reactions

3.1.5 Aza-Benzoin Reactions

3.2 Enantioselective Stetter Reactions

3.2.1 Intramolecular Stetter Reactions

3.2.2 Intermolecular Stetter Reactions

3.3 Enantioselective Diels–Alder Reactions

3.4 Enantioselective Michael Additions

3.5 Enantioselective Rauhut–Currier Reactions

3.6 Enantioselective Cycloadditions

3.7 Enantioselective Michael–Stetter Cascade Reactions

3.8 Enantioselective Annulation Reactions

3.9 Synthesis of Spiro Compounds

3.10 Heterocycle Synthesis

3.11 Carbocycle Synthesis

3.12 Asymmetric Steglich Rearrangement Reactions

3.13 NHC-Mediated Asymmetric Acylation/Hydroacylation Reactions

3.14 Enantioselective α-Fluorination of Aliphatic Aldehydes

3.15 Functionalization of Carboxylic Anhydrides by NHC Catalysis

3.16 Asymmetric β-Boration of Acyclic Enones

3.17 Synthesis of Tropane Derivatives via Organocatalysis

3.18 Dynamic Kinetic Resolution of Pyranones via NHC Catalysis

3.19 Enantioselective Umpolung Reactions

3.20 Enantioselective Esterification of Ketenes

3.21 Asymmetric Synthesis of trans-γ-Lactams

3.22 Oxy-Cope Rearrangements

3.23 Claisen Rearrangements

3.24 Enantioselective Synthesis of Complex Heterocycles

3.25 Atroposelective Synthesis of N-Aryl Succinimides

3.26 Asymmetric α-Fluorination via Cascade Reactions

4 Conclusion



Publication History

Received: 31 March 2022

Accepted after revision: 19 May 2022

Accepted Manuscript online:
19 May 2022

Article published online:
03 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Igau A, Grutzmacher H, Baceiredo A, Bertrand G. J. Am. Chem. Soc. 1988; 110: 6463
  • 2 Berkessel A, Elfert S, Yatham VR, Neudörfl JM, Schlörer NE, Teles JH. Angew. Chem. Int. Ed. 2012; 51: 12370
  • 3 Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
  • 4 Breslow R. J. Am. Chem. Soc. 1957; 79: 1762
  • 5 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
  • 6 Hahn FE. Chem. Rev. 2018; 118: 9455
  • 7 Gadekar SC, Dhayalan V, Nandi A, Zak IL, Mizrachi MS, Kozuch S, Milo A. ACS Catal. 2021; 11: 14561
  • 8 Mizuhara S, Tamura R, Arata H. Proc. Jpn. Acad. 1951; 27: 302
  • 9 Arduengo AJ. III, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 61
  • 10 Dirocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
  • 11 Gawin R, Pieczykolan M, Malińska M, Woźniak K, Grela K. Synlett 2013; 24: 1250
  • 12 Guo C, Janssen-Müller D, Fleige M, Lerchen A, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2017; 139: 4443
  • 13 Singha S, Serrano E, Mondal S, Daniliuc CG, Glorius F. Nat. Catal. 2020; 3: 48
  • 14 Reid JP, Hu M, Ito S, Huang B, Hong CM, Xiang H, Sigman MS, Toste FD. Chem. Sci. 2020; 11: 6450
  • 15 Hahn FE, Jahnke MC. Angew. Chem. Int. Ed. 2008; 47: 3122
  • 16 Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
  • 17 Crabtree RH. J. Organomet. Chem. 2005; 690: 5451
  • 18 Dhayalan V, Hayashi M. Synthesis 2012; 44: 2209
  • 19 Würtz S, Glorius F. Acc. Chem. Res. 2008; 41: 1523
  • 20 Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
  • 21 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
  • 22 Ackermann L, Fürstner A, Weskamp T, Kohl FJ, Herrmann WA. Tetrahedron Lett. 1999; 40: 4787
  • 23 Samojłowicz C, Bieniek M, Grela K. Chem. Rev. 2009; 109: 3708
  • 24 Huang J, Stevens ED, Nolan SP, Petersen JL. J. Am. Chem. Soc. 1999; 121: 2674
  • 25 Ulman M, Grubbs RH. J. Org. Chem. 1999; 64: 7202
  • 27 Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
  • 28 Menon RS, Biju AT, Nair V. Beilstein J. Org. Chem. 2016; 12: 444
  • 29 Breslow R. N-Heterocyclic Carbenes in Organocatalysis . Biju AT. John Wiley & Sons; Weinheim: 2019
  • 31 Scheffler U, Mahrwald R. Chem. Eur. J. 2013; 19: 14346
    • 32a Enders D, Breuer K, Raabe G, Runsink J, Henrique Teles J, Melder JP, Ebel K, Brode S. Angew. Chem., Int. Ed. Engl. 1995; 34: 1021
    • 32b Enders D, Gielen H. J. Organomet. Chem. 2001; 617: 70
  • 33 Knight RL, Leeper FJ. J. Chem. Soc., Perkin Trans. 1 1998; 1891
  • 34 Filloux CM, Lathrop SP, Rovis T, Macmillan DW. C. PNAS 2010; 107: 20666
  • 35 Kerr MS, Read De Alaniz J, Rovis T. J. Org. Chem. 2005; 70: 5725
  • 36 Liu Q, Perreault S, Rovis T. J. Am. Chem. Soc. 2008; 130: 14066
  • 37 Moore JL, Silvestri AP, de Alaniz JR, Dirocco DA, Rovis T. Org. Lett. 2011; 13: 1742
  • 38 Chen D.-F, Rovis T. Synthesis 2017; 49: 293
  • 39 He M, Struble JR, Bode JW. J. Am. Chem. Soc. 2006; 128: 8418
  • 40 Zheng P, Gondo CA, Bode JW. Chem. Asian J. 2011; 6: 614
  • 41 Mahatthananchai J, Bode JW. Chem. Sci. 2012; 3: 192
  • 42 Chiang PC, Bode JW. Org. Lett. 2011; 13: 2422
  • 43 Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011; 44: 1182
  • 44 Piel I, Steinmetz M, Hirano K, Fröhlich R, Grimme S, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 4983
  • 45 Liu F, Bugaut X, Schedler M, Fröhlich R, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 12626
  • 46 Wurz NE, Daniliuc CG, Glorius F. Chem. Eur. J. 2012; 18: 16297
  • 47 Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
  • 48 Piel I, Pawelczyk MD, Hirano K, Fröhlich R, Glorius F. Eur. J. Org. Chem. 2011; 5475
  • 49 Hirano K, Biju AT, Piel I, Glorius F. J. Am. Chem. Soc. 2009; 131: 14190
    • 50a Enders D, Henseler A. Adv. Synth. Catal. 2009; 351: 1749
    • 50b Song X, Ni Q, Zhu C, Raabe G, Enders D. Synthesis 2015; 47: 421
    • 50c Li S, Chen XY, Liu Q, Peuronen A, Rissanen K, Enders D. Synthesis 2017; 49: 4861
  • 51 Enders D, Kallfass U. Angew. Chem. Int. Ed. 2002; 41: 1743
  • 52 Ni Q, Song X, Raabe G, Enders D. Chem. Asian J. 2014; 9: 1535
  • 53 Enders D, Han J, Henseler A. Chem. Commun. 2008; 3989
  • 54 Rafiński Z, Kozakiewicz A, Rafińska K. ACS Catal. 2014; 4: 1404
  • 55 Rafiński Z, Kozakiewicz A, Rafińska K. Tetrahedron 2014; 70: 5739
  • 56 Cardinal-David B, Raup DE. A, Scheidt KA. J. Am. Chem. Soc. 2010; 132: 5345
  • 57 Dugal-Tessier J, O’Bryan EA, Schroeder TB. H, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 4963
  • 58 Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
  • 59 Phillips EM, Riedrich M, Scheidt KA. J. Am. Chem. Soc. 2010; 132: 13179
  • 60 Jang KP, Hutson GE, Johnston RC, McCusker EO, Cheong PH. Y, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 76
  • 62 Shen LT, Shao PL, Ye S. Adv. Synth. Catal. 2011; 353: 1943
  • 63 Sun L.-H, Liang Z.-Q, Jia W.-Q, Ye S. Angew. Chem. 2013; 125: 5915
  • 64 Zhang YR, He L, Wu X, Shao PL, Ye S. Org. Lett. 2008; 10: 277
  • 65 Fang X, Chen X, Lv H, Chi YR. Angew. Chem. Int. Ed. 2011; 50: 11782
  • 66 Cheng J, Huang Z, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 8592
  • 67 Mo J, Chen X, Chi YR. J. Am. Chem. Soc. 2012; 134: 8810
  • 68 Fu Z, Xu J, Zhu T, Leong WW. Y, Chi YR. Nat. Chem. 2013; 5: 835
    • 69a O’Toole SE, Connon SJ. Org. Biomol. Chem. 2009; 7: 3584
    • 69b Rose CA, Gundala S, Connon SJ, Zeitler K. Synthesis 2011; 2: 190
  • 70 Rose CA, Gundala S, Fagan CL, Franz JF, Connon SJ, Zeitler K. Chem. Sci. 2012; 3: 735
  • 71 Baragwanath L, Rose CA, Zeitler K, Connon SJ. J. Org. Chem. 2009; 74: 9214
    • 78a Reddi Y, Sunoj RB. Org. Lett. 2012; 14: 2810
    • 78b Brand JP, Siles JI. O, Waser J. Synlett 2010; 881
    • 79a Thai K, Langdon SM, Bilodeau F, Gravel M. Org. Lett. 2013; 15: 2214
    • 79b Hachisu Y, Bode JW, Susuki K. J. Am. Chem. Soc. 2003; 125: 8432
  • 80 Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516
  • 81 Tomita D, Yamatsugu K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 6946
  • 82 Tiefenbacher K, Arion VB, Mulzer J. Angew. Chem. Int. Ed. 2007; 46: 2690
  • 83 Wellington KD, Cambie RC, Rutledge PS, Bergquist PR. J. Nat. Prod. 2000; 63: 79
  • 84 Crossley SW. M, Tong G, Lambrecht MJ, Burdge HE, Shenvi RA. J. Am. Chem. Soc. 2020; 142: 11376
  • 85 Lamberth C, Jeanmart S, Luksch T, Plant A. Science 2013; 341: 742
  • 86 Lipp A, Selt M, Ferenc D, Schollmeyer D, Waldvogel SR, Opatz T. Org. Lett. 2019; 21: 1828
  • 87 Nemoto H, Shiraki M, Nagamochi M, Fukumoto K. Tetrahedron Lett. 1993; 34: 4939
  • 88 Ishikawa H, Elliott GI, Velcicky J, Choi Y, Boger DL. J. Am. Chem. Soc. 2006; 128: 10596
  • 89 Yu S, Huang QQ, Luo Y, Lu W. J. Org. Chem. 2012; 77: 713
  • 90 Peng H, Chen FE. Org. Biomol. Chem. 2017; 15: 6281
  • 91 Nickel A, Maruyama T, Tang H, Murphy PD, Greene B, Yusuff N, Wood JL. J. Am. Chem. Soc. 2004; 126: 16300
  • 92 Kok P, De Clercq P, Vandewalle M. Bull. Soc. Chim. Belg. 1978; 87: 615
  • 93 Correia CA, Gilmore K, McQuade DT, Seeberger PH. Angew. Chem. 2015; 127: 5028
  • 94 Wu Z, Harutyunyan SR, Minnaard AJ. Chem. Eur. J. 2014; 20: 14250
  • 95 Lehwald P, Richter M, Röhr C, Liu H, Müller M. Angew. Chem. 2010; 122: 2439
  • 96 Enders D, Grossmann A, Fronert J, Raabe G. Chem. Commun. 2010; 46: 6282
  • 97 Walker MC, Chang MC. Y. Chem. Soc. Rev. 2014; 43: 6527
  • 98 va der Kamp MW, McGeagh JD, Mulholland AJ. Angew. Chem. Int. Ed. 2011; 50: 10349
  • 99 Zhu XM, Hackl S, Thaker MN, Kalan L, Weber C, Urgast DS, Krupp EM, Brewer A, Vanner S, Szawiola A, Yim G, Feldmann J, Bechthold A, Wright GD, Zechel DL. ChemBioChem 2015; 16: 2498
  • 100 Hawkinson JE, Wieland S, Wood P. J. Pharmacol. Exp. Ther. 1997; 282: 420
  • 101 Chorki F, Grellepois F, Crousse B, Hoang VD, van Hung N, Bonnet-Delpon D, Bégué JP. Org. Lett. 2002; 4: 757
  • 102 Hines WJ. W. J. Pharm. Pharmacol. 1969; 21: 509
  • 103 Gatel M, Muzard M, Guillerm D, Guillerm G. Eur. J. Med. Chem. 1996; 31: 37
  • 104 Counts GW, Gregory D, Zeleznik D, Turck M. Antimicrob. Agents Chemother. 1977; 11: 708
  • 105 Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 106a Dhayalan V, Mal K, Milo A. Synthesis 2019; 51: 2845
    • 106b Shen Z.-L, Dhayalan V, Benischke AD, Greiner R, Karaghiosoff K, Mayer P, Knochel P. Angew. Chem. Int. Ed. 2016; 55: 5332
    • 106c Sämann C, Dhayalan V, Schreiner PR, Knochel P. Org. Lett. 2014; 16: 2418
    • 106d Dhayalan V, Sämann C, Knochel P. Chem. Commun. 2015; 51: 3239
    • 107a Raed AA, Dhayalan V, Barkai S, Milo A. Chimia 2020; 74: 878
    • 107b Domb I, Lustosa DM, Milo A. Chem. Commun. 2022; 58: 1950
  • 108 Dhayalan V, Gadekar SC, Alassad Z, Milo A. Nat. Chem. 2019; 11: 543
  • 109 Hamada Y, Tanada Y, Yokokawa F, Shioiri T. Tetrahedron Lett. 1991; 32: 5983
  • 110 Acevedo CM, Kogut EF, Lipton MA. Tetrahedron 2001; 57: 6353
  • 111 Enders D, Niemeier O, Balensiefer T. Angew. Chem. Int. Ed. 2006; 45: 1463
  • 112 Delany EG, Connon SJ. Org. Biomol. Chem. 2021; 19: 248
  • 113 Huang XL, He L, Shao PL, Ye S. Angew. Chem. Int. Ed. 2009; 48: 192
  • 114 Jian TY, He L, Tang C, Ye S. Angew. Chem. Int. Ed. 2011; 50: 9104
  • 115 Goodman CG, Walker MM, Johnson JS. J. Am. Chem. Soc. 2015; 137: 122
  • 116 Wu Z, Wang J. ACS Catal. 2017; 7: 7647
  • 117 Jin Z, Chen S, Wang Y, Zheng P, Yang S. Angew. Chem. Int. Ed. 2014; 53: 13506
  • 118 Zhao C, Li F, Wang J. Angew. Chem. Int. Ed. 2016; 55: 1820
  • 119 Um JM, DiRocco DA, Noey EL, Rovis T, Houk KN. J. Am. Chem. Soc. 2011; 133: 11249
  • 120 DiRocco DA, Oberg KM, Dalton DM, Rovis T. J. Am. Chem. Soc. 2009; 131: 10872
  • 121 Sun FG, Sun LH, Ye S. Adv. Synth. Catal. 2011; 353: 3134
  • 122 White NA, DiRocco DA, Rovis T. J. Am. Chem. Soc. 2013; 135: 8504
  • 123 Carmine GD, Ragno D, Bortolini O, Giovannini PP, Mazzanti A, Massi A, Fogagnolo M. J. Org. Chem. 2018; 83: 2050
  • 124 Zhao X, DiRocco DA, Rovis T. J. Am. Chem. Soc. 2011; 133: 12466
  • 125 Enders D, Han J. Synthesis 2008; 3864
  • 126 Li F, Wu Z, Wang J. Angew. Chem. 2015; 127: 666
  • 127 Wang L, Chen Z, Ma M, Duan W, Song C, Ma Y. Org. Biomol. Chem. 2015; 13: 10691
  • 128 Soeta T, Tabatake Y, Inomata K, Ukaji Y. Tetrahedron 2012; 68: 894
  • 129 Candish L, Forsyth CM, Lupton DW. Angew. Chem. Int. Ed. 2013; 52: 9149
  • 130 Enders D, Han J. Tetrahedron: Asymmetry 2008; 19: 1367
  • 131 Nakano Y, Lupton DW. Angew. Chem. Int. Ed. 2016; 55: 3135
  • 132 Campbell CD, Concellón C, Smith AD. Tetrahedron: Asymmetry 2011; 22: 797
  • 133 Bae S, Zhang C, Gillard RM, Lupton DW. Angew. Chem. Int. Ed. 2019; 58: 13370
  • 134 Janssen-Mîller D, Schedler M, Fleige M, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 12492
  • 135 Chan A, Scheidt KA. J. Am. Chem. Soc. 2008; 130: 2740
    • 136a Li Y, Zhao ZA, He H, You SL. Adv. Synth. Catal. 2008; 350: 1885
    • 136b Murauski KJ. R, Walden DM, Cheong PH.-Y, Scheidt KA. Adv. Synth. Catal. 2017; 359: 3713
  • 137 Li Y, Feng Z, You SL. Chem. Commun. 2008; 19: 2263
  • 138 Jia MQ, You SL. ACS Catal. 2013; 3: 622
  • 139 Xu J, Mou C, Zhu T, Song BA, Chi YR. Org. Lett. 2014; 16: 3272
  • 140 Rafinski Z, Kozakiewicz A. J. Org. Chem. 2015; 80: 7468
  • 141 Rong ZQ, Li Y, Yang GQ, You SL. Synlett 2011; 1033
  • 142 Struble JR, Bode JW. Org. Synth. 2010; 87: 362
  • 143 Takikawa H, Hachisu Y, Bode JW, Suzuki K. Angew. Chem. Int. Ed. 2006; 45: 3492
  • 144 Kuwano S, Harada S, Kang B, Oriez R, Yamaoka Y, Takasu K, Yamada K. J. Am. Chem. Soc. 2013; 135: 11485
  • 145 Chiang PC, Kaeobamrung J, Bode JW. J. Am. Chem. Soc. 2007; 129: 3520
  • 146 Allen SE, Mahatthananchai J, Bode JW, Kozlowski MC. J. Am. Chem. Soc. 2012; 134: 12098
  • 147 Ghosh A, Barik S, Biju AT. Org. Lett. 2019; 21: 8598
  • 148 Ozboya KE, Rovis T. Synlett 2014; 25: 2665
  • 149 Ragno D, Di Carmine G, Brandolese A, Bortolini O, Giovannini PP, Massi A. ACS Catal. 2017; 7: 6365
  • 150 Sanchez-Larios E, Thai K, Bilodeau F, Gravel M. Org. Lett. 2011; 13: 4942
  • 151 DiRocco DA, Rovis T. Angew. Chem. Int. Ed. 2012; 51: 5904
    • 152a Enders D, Breuer K, Runsink J, Teles JH. Helv. Chim. Acta 1996; 79: 1899
    • 152b Kerr MS, Read de Alaniz J, Rovis T. J. Am. Chem. Soc. 2002; 124: 10298
  • 153 Ye KY, Cheng Q, Zhuo CX, Dai LX, You SL. Angew. Chem. Int. Ed. 2016; 55: 8113
  • 154 Concellón C, Duguet N, Smith AD. Adv. Synth. Catal. 2009; 351: 3001
  • 155 List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
  • 156 Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
  • 157 Xiang SH, Tan B. Nat. Commun. 2020; 11: 3786
  • 158 Duan M, Díaz-Oviedo CD, Zhou Y, Chen X, Yu P, List B, Houk KN. Angew. Chem. Int. Ed. 2022; 61: e202113204
  • 159 Aukland MH, List B. Pure Appl. Chem. 2021; 93: 1371
  • 160 List B. Chem. Rev. 2007; 107: 5413
  • 161 Xie Y, List B. Angew. Chem. Int. Ed. 2017; 56: 4936
  • 162 Liu C, Oblak EZ, Vander Wal MN, Dilger AK, Almstead DK, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 2134
  • 163 Ma Y, Wei S, Wu J, Yang F, Liu B, Lan J, Yang SJ, You J. Adv. Synth. Catal. 2008; 350: 2645
  • 164 Das TK, Biju AT. Eur. J. Org. Chem. 2017; 30: 4500
  • 165 Jousseaume T, Wurz NE, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1410
  • 166 Michael A. J. Prakt. Chem. 1887; 35: 349
  • 167 Sarkar D, Bhattarai R, Headley AD, Ni B. Synthesis 2011; 12: 1993
  • 168 Pfau M, Revial G, Guingant A, d’Angelo J. J. Am. Chem. Soc. 1985; 107: 273
  • 169 Phillips EM, Wadamoto M, Chan A, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 3107
  • 170 Mukherjee S, Shee S, Poisson T, Besset T, Biju AT. Org. Lett. 2018; 20: 6998
  • 171 Rong ZQ, Jia MQ, You SL. Org. Lett. 2011; 13: 4080
  • 172 Goswami P, Sharma S, Singh G, Anand RV. J. Org. Chem. 2018; 83: 4213
  • 173 Cohen DT, Cardinal-David B, Scheidt KA. Angew. Chem. 2011; 123: 1716
  • 174 Zhang YR, Lv H, Zhou D, Ye S. Chem. Eur. J. 2008; 14: 8473
  • 175 Guo C, Schedler M, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10232
  • 176 Zheng C, Yao W, Zhang Y, Ma C. Org. Lett. 2014; 16: 5028
    • 177a Wanner B, Mahatthananchai J, Bode JW. Org. Lett. 2011; 13: 5378
    • 177b Lee A, Scheidt KA. Chem. Commun. 2015; 51: 3407
  • 178 Xu JH, Zheng SC, Zhang JW, Liu XY, Tan B. Angew. Chem. Int. Ed. 2016; 55: 11834
  • 179 Das TK, Ghosh A, Balanna K, Behera P, Gonnade RG, Marelli UK, Das AK, Biju AT. ACS Catal. 2019; 9: 4065
  • 180 Wang XN, Lv H, Huang XL, Ye S. Org. Biomol. Chem. 2009; 7: 346
  • 181 Cope AC, Hardy EM. J. Am. Chem. Soc. 1940; 62: 441
  • 182 Berson JA, Jones M. J. Am. Chem. Soc. 1964; 86: 5019
  • 183 He M, Bode JW. J. Am. Chem. Soc. 2008; 130: 418
  • 184 Mahatthananchai J, Kaeobamrung J, Bode JW. ACS Catal. 2012; 2: 494
  • 185 Yang X, Xie Y, Xu J, Ren S, Mondal B, Zhou L, Tian W, Zhang X, Hao L, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2021; 133: 7985
  • 186 Barik S, Shee S, Das S, Gonnade RG, Jindal G, Mukherjee S, Biju AT. Angew. Chem. Int. Ed. 2021; 133: 12372
  • 187 Jiang X, Li E, Chen J, Huang Y. Chem. Commun. 2021; 57: 729