Synthesis 2022; 54(19): 4371-4380
DOI: 10.1055/a-1848-3399
paper

Palladium-Catalyzed Synthesis of Aryl Ketones from Carboxylic Acids and Arylboronic Acids Using 2-Chloroimidazolium Chloride as a Coupling Reagent

Wei-Xiang Zheng
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, P. R. of China
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Jing Zhong
c   Department of Chemistry, Xihua University, Chengdu, 610039, P. R. of China
,
Yi-Ting Yang
c   Department of Chemistry, Xihua University, Chengdu, 610039, P. R. of China
,
Meluze Luobu
c   Department of Chemistry, Xihua University, Chengdu, 610039, P. R. of China
,
Yan Zhang
c   Department of Chemistry, Xihua University, Chengdu, 610039, P. R. of China
,
Yuan-Hua Wang
d   College of Chemistry, Sichuan University, Chengdu, 610041, P. R. of China
,
Qi-Wei Wang
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
c   Department of Chemistry, Xihua University, Chengdu, 610039, P. R. of China
› Author Affiliations
This work was supported by the start-up fund for recruited talent of Xihua University (Z202084) and the Chunhui Project Foundation of the Ministry of Education of the People's Republic of China (Z2017060).


Abstract

Carboxylic acids are an abundant and structurally diverse class of commercially available materials, which are commonly used as stable reagents in organic synthesis. The Suzuki–Miyaura coupling reaction directly using carboxylic acid as a substrate has been rarely reported. Here, we report an efficient coupling reaction of carboxylic acids with arylboronic acids in toluene in the presence of IPrCl-Cl, Pd(OAc)2, PPh3, and K3PO4·7H2O at 90 °C to give the corresponding aryl ketones.

Supporting Information



Publication History

Received: 11 April 2022

Accepted after revision: 10 May 2022

Accepted Manuscript online:
10 May 2022

Article published online:
23 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hatano B, Kadokawa JI, Tagaya H. Tetrahedron Lett. 2002; 43: 5859
    • 1b Zhang YD, Rovis T. J. Am. Chem. Soc. 2004; 126: 15964
    • 2a Fillion E, Fishlock D, Wilsily A, Goll JM. J. Org. Chem. 2005; 70: 1316
    • 2b Shi M, Wu L, Lu J.-M. Tetrahedron 2008; 64: 3315
  • 3 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 4 Pedley JB, Naylor RD, Kirby SP. Thermochemical Data of Organic Compounds, 2nd ed. Chapman and Hall; New York: 1986
    • 5a Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
    • 5b Buchspies J, Szostak M. Catalysts 2019; 9: 53
    • 6a Dieter RK. Tetrahedron 1999; 55: 4177
    • 6b Blangetti M, Rosso H, Prandi C, Deagostino A, Venturello P. Molecules 2013; 18: 1188
    • 7a Liebeskind LS, Srogl J. J. Am. Chem. Soc. 2000; 122: 11260
    • 7b Wittenberg R, Srogl J, Egi M, Liebeskind L. Org. Lett. 2003; 5: 3033
    • 7c Prokopcová H, Kappe CO. Angew. Chem. Int. Ed. 2009; 48: 2276
    • 8a Gooßen LJ, Ghosh K. Angew. Chem. Int. Ed. 2001; 40: 3458
    • 8b Gooßen LJ, Koley D, Hermann HL, Thiel W. J. Am. Chem. Soc. 2005; 127: 11102
    • 8c Chen Q, Fan X.-H, Zhang L.-P, Yang L.-M. RSC Adv. 2014; 4: 53885
    • 9a Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
    • 9b Shi S, Meng G, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
    • 9c Meng G, Shi S, Szostak M. ACS Catal. 2016; 6: 7335
    • 10a Amaike K, Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 13573
    • 10b Guo L, Chatupheeraphat A, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 11810
  • 11 Han J, Sun Y, Wang Z, Huang Q, Zhu J, Wang Y, Zhong L, Wang Q. ChemistrySelect 2020; 5: 4596
    • 12a Wang Q, Dai Z, Di X, Huang Q, Wang Y, Zhu J. Mol. Diversity 2020; 24: 903
    • 12b Yadav MR, Nagaoka M, Kashihara M, Zhong RL, Miyazaki T, Sakaki S, Nakao Y. J. Am. Chem. Soc. 2017; 139: 9423
    • 13a Amatore C, Jutand A. Acc. Chem. Res. 2000; 33: 314
    • 13b Kakino R, Narahashi H, Shimizu I, Yamamoto A. Chem. Lett. 2001; 1242
  • 14 Xin BW, Zhang YH, Cheng K. J. Org. Chem. 2006; 71: 5725
  • 15 Zhou Q, Wei SH, Han W. J. Org. Chem. 2014; 79: 1454
  • 16 Gonzalez-de-Castro A, Xiao JL. J. Am. Chem. Soc. 2015; 137: 8206
  • 17 Meng M, Yang L, Cheng K, Qi C. J. Org. Chem. 2018; 83: 3275
  • 18 Sapountzis I, Lin W, Kofink CC, Despotopoulou C, Knochel P. Angew. Chem. Int. Ed. 2005; 44: 1654
  • 19 Kantam ML, Kishore R, Yadav J, Sudhakar M, Venugopal A. Adv. Synth. Catal. 2012; 354: 663
  • 20 Landers B, Berini C, Wang C, Navarro O. J. Org. Chem. 2011; 76: 1390
  • 21 Zhao B, Lu X. Org. Lett. 2006; 8: 5987
  • 22 Li M, Wang C, Ge H. Org. Lett. 2011; 13: 2062
  • 23 Kangani CO, Kelley DE, Day BW. Tetrahedron Lett. 2006; 47: 6289
  • 24 Zhang XY, Wang ZX, Fan XS, Wang JJ. J. Org. Chem. 2015; 80: 10660
  • 25 Li X, Zou G. J. Organomet. Chem. 2015; 794: 136
  • 26 Hao W, Liu H, Yin L, Cai M. J. Org. Chem. 2016; 81: 4244
  • 27 Villalobos JM, Srogl J, Liebeskind LS. J. Am. Chem. Soc. 2007; 129: 15734
  • 28 Rao ML, Venkatesh V, Banerjee D. Tetrahedron 2007; 63: 12917
  • 29 Goutham P, Chavan LN, Chegondi R, Chandrasekhar S. J. Org. Chem. 2018; 83: 3325