Synthesis 2022; 54(20): 4426-4446
DOI: 10.1055/a-1848-3005
short review

Recent Progress on Transition-Metal-Mediated Reductive C(sp3)–O Bond Radical Addition and Coupling Reactions

Li Cheng
a   School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. of China
,
Quan Lin
a   School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. of China
,
Yunrong Chen
b   Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China
,
Hegui Gong
b   Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China
› Author Affiliations
Financial support of this work was provided by the National Natural Science Foundation of China (Grant No. 21871173).


Abstract

In this short review, we summarize the recent developments on thermo-driven C(sp3)–O bond radical scission methods and their applications in the construction of C(sp3)–C bonds via conjugate addition with activated double bonds and reductive coupling mediated by economic 3d metals, in particular nickel. We have arranged the review based on three approaches for C(sp3)–O bond radical scission (vide infra). After generating the radical intermediates, their subsequent transformation into C(sp3)–C bonds enabled by C(sp3)–O cross-electrophile coupling with carbon electrophiles is discussed in detail.

1 Introduction

2 Direct Single-Electron Transfer to a C(sp3)–O Bond

3 Radical Scission of Activated C(sp3)–O Bonds via Single-Electron Transfer to Protecting Groups

4 In Situ Activation of Alcohols

5 Summary and Outlook



Publication History

Received: 31 March 2022

Accepted after revision: 10 May 2022

Accepted Manuscript online:
10 May 2022

Article published online:
30 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 2 McCombie SW, Motherwell WB, Tozer MJ. The Barton-McCombie Reaction . In Organic Reactions, Vol. 77. John Wiley & Sons; Hoboken: 2012: 161
    • 3a Jamison CR, Overman LE. Acc. Chem. Res. 2016; 49: 1578
    • 3b Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 3c Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 3d Parida SK, Manda T, Das S, Hota SK, De Sarkar S, Murarka S. ACS Catal. 2021; 11: 1640
    • 3e Xue W, Jia X, Wang X, Tao X, Yin Z, Gong H. Chem. Soc. Rev. 2021; 50: 4162
  • 4 RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1994; 116: 986
    • 5a Larraufie M.-H, Pellet R, Fensterbank L, Goddard J.-P, Lacôte E, Malacria M, Ollivier C. Angew. Chem. Int. Ed. 2011; 50: 4463
    • 5b Lin Z, Lan Y, Wang C. Org. Lett. 2020; 22: 3509
  • 6 Gansäuer A, Shi L, Otte M. J. Am. Chem. Soc. 2010; 132: 11858
  • 8 Zhao Y, Weix DJ. J. Am. Chem. Soc. 2015; 137: 3237
  • 9 Banerjee A, Yamamoto H. Org. Lett. 2017; 19: 4363
  • 10 Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. ACS Catal. 2020; 10: 5821
  • 11 Lau SH, Borden MA, Steiman TJ, Wang LS, Parasram M, Doyle AG. J. Am. Chem. Soc. 2021; 143: 15873
  • 12 Potrząsaj A, Musiejuk M, Chaładaj W, Giedyk M, Gryko D. J. Am. Chem. Soc. 2021; 143: 9368
  • 13 Potrząsaj A, Ociepa M, Chaładaj W, Gryko D. Org. Lett. 2022; 24: 2469
  • 14 Diéguez HR, López A, Domingo V, Arteaga JF, Dobado JA, Herrador MM, Quílez del Moral JF, Barrero AF. J. Am. Chem. Soc. 2010; 132: 254
  • 15 Suga T, Shimazu S, Ukaji Y. Org. Lett. 2018; 20: 5389
  • 16 Suga T, Nakamura M, Takada R, Ukaji Y. Bull. Chem. Soc. Jpn. 2021; 94: 1258
  • 17 Xie H, Guo J, Wang Y.-Q, Wang K, Guo P, Su P.-F, Wang X, Shu X.-Z. J. Am. Chem. Soc. 2020; 142: 16787
  • 18 Xie H, Wang S, Wang Y, Guo P, Shu X.-Z. ACS Catal. 2022; 12: 1018
  • 19 Suga T, Takahashi Y, Miki C, Ukaji Y. Angew. Chem. Int. Ed. 2022; 61: e202112533
  • 20 Bandari C, Nicholas KM. J. Org. Chem. 2020; 85: 3320
  • 21 Suga T, Ukaji Y. Org. Lett. 2018; 20: 7846
  • 22 Suga T, Takahashi Y, Ukaji Y. Adv. Synth. Catal. 2020; 362: 5622
    • 23a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 23b Lackner GL, Quasdorf KW, Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
  • 24 Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DW. C, Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
  • 25 Lackner GL, Quasdorf KW, Pratsch G, Overman LE. J. Org. Chem. 2015; 80: 6012
  • 26 Gao C, Li J, Yu J, Yang H, Fu H. Chem. Commun. 2016; 52: 7292
  • 27 Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 13862
  • 28 Nacsa ED, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 3322
    • 30a Mills LR, Monteith JJ, dos Passos Gomes G, Aspuru-Guzik A, Rousseaux SA. L. J. Am. Chem. Soc. 2020; 142: 13246
    • 30b Monteith JJ, Rousseaux SA. L. Org. Lett. 2021; 23: 9485
    • 30c Cai A, Yan W, Liu W. J. Am. Chem. Soc. 2021; 143: 9952
  • 31 Arendt KM, Doyle AG. Angew. Chem. Int. Ed. 2015; 54: 9876
    • 32a Kariofillis SK, Shields BJ, Tekle-Smith MA, Zacuto MJ, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7683
    • 32b Kariofillis SK, Jiang S, Żurański AM, Gandhi SS, Martinez Alvarado JI, Doyle AG. J. Am. Chem. Soc. 2022; 144: 1045
  • 33 Xu J, Bercher OP, Watson MP. J. Am. Chem. Soc. 2021; 143: 8608
    • 34a Moragas T, Cornella J, Martin R. J. Am. Chem. Soc. 2014; 136: 17702
    • 34b van Gemmeren M, Börjesson M, Tortajada A, Sun S.-Z, Okura K, Martin R. Angew. Chem. Int. Ed. 2017; 56: 6558
    • 35a Tollefson EJ, Erickson LW, Jarvo ER. J. Am. Chem. Soc. 2015; 137: 9760
    • 35b Konev MO, Hanna LE, Jarvo ER. Angew. Chem. Int. Ed. 2016; 55: 6730
    • 36a Qian X, Auffrant A, Felouat A, Gosmini C. Angew. Chem. Int. Ed. 2011; 50: 10402
    • 36b Dai Y, Wu F, Zang Z, You H, Gong H. Chem. Eur. J. 2012; 18: 808
  • 37 Yan X.-B, Li C.-L, Jin W.-J, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529
  • 38 Pan Y, Gong Y, Song Y, Tong W, Gong H. Org. Biomol. Chem. 2019; 17: 4230
  • 39 Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2019; 141: 820
  • 40 Lin Q, Diao T. J. Am. Chem. Soc. 2019; 141: 17937
  • 41 Gao M, Sun D, Gong H. Org. Lett. 2019; 21: 1645
  • 43 Ye Y, Ma G, Yao K, Gong H. Synlett 2021; 32: 1625
  • 44 Ye Y, Chen H, Yao K, Gong H. Org. Lett. 2020; 22: 2070
  • 45 Chen H, Ye Y, Tong W, Fang J, Gong H. Chem. Commun. 2020; 56: 454
  • 46 Zhuo J, Zhu C, Wu J, Li Z, Li C. J. Am. Chem. Soc. 2022; 144: 99
  • 47 Chen X, Luo X, Peng X, Guo J, Zai J, Wang P. Chem. Eur. J. 2020; 26: 3226
  • 48 Li Y, Wang Z, Li L, Tian X, Shao F, Li C. Angew. Chem. Int. Ed. 2022; 61: e202110391
    • 49a Liang Z, Xue W, Lin K, Gong H. Org. Lett. 2014; 16: 5620
    • 49b Wang J, Zhao J, Gong H. Chem. Commun. 2017; 53: 10180
  • 50 Molander GA, Traister KM, O’Neill BT. J. Org. Chem. 2015; 80: 2907
  • 51 Duan J, Du Y.-F, Pang X, Shu X.-Z. Chem. Sci. 2019; 10: 8706
  • 52 Sanford AB, Thane TA, McGinnis TM, Chen P.-P, Hong X, Jarvo ER. J. Am. Chem. Soc. 2020; 142: 5017
  • 53 Cui R, Sheng J, Wu B.-B, Hu D.-D, Zheng H.-Q, Wang X.-S. Chem. Commun. 2021; 57: 9084
  • 54 Xu H, Zhao C, Qian Q, Deng W, Gong H. Chem. Sci. 2013; 4: 4022
  • 55 Xiao J, Li Z, Montgomery J. J. Am. Chem. Soc. 2021; 143: 21234
  • 56 Ackerman LK. G, Anka-Lufford LL, Naodovic M, Weix DJ. Chem. Sci. 2015; 6: 1115
  • 57 Komeyama K, Michiyuki T, Osaka I. ACS Catal. 2019; 9: 9285
  • 58 Komeyama K, Ohata R, Kiguchi S, Osaka I. Chem. Commun. 2017; 53: 6401
    • 59a Pan L, Shimakoshi H, Masuko T, Hisaeda Y. Dalton Trans. 2009; 9898
    • 59b Giedyk M, Goliszewska K, Gryko D. Chem. Soc. Rev. 2015; 44: 3391
  • 60 Michiyuki T, Osaka I, Komeyama K. Chem. Commun. 2020; 56: 1247
  • 61 Serrano E, Martin R. Angew. Chem. Int. Ed. 2016; 55: 11207
  • 62 Komeyama K, Michiyuki T, Teshima Y, Osaka I. RSC Adv. 2021; 11: 3539
  • 63 Liu J.-H, Yang C.-T, Lu X.-Y, Zhang Z.-Q, Xu L, Cui M, Lu X, Xiao B, Fu Y, Liu L. Chem. Eur. J. 2014; 20: 15334
  • 64 Hu L, Liu X, Liao X. Angew. Chem. Int. Ed. 2016; 55: 9743
  • 65 Xiang Y.-G, Wang X.-W, Zheng X, Ruan Y.-P, Huang P.-Q. Chem. Commun. 2009; 7045
  • 66 Zheng X, Dai X.-J, Yuan H.-Q, Ye C.-X, Ma J, Huang P.-Q. Angew. Chem. Int. Ed. 2013; 52: 3494
  • 67 Guo P, Wang K, Jin W.-J, Xie H, Qi L, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 513
  • 68 Ma W.-Y, Han G.-Y, Kang S, Pang X, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 15930
  • 69 Li Z, Sun W, Wang X, Li L, Zhang Y, Li C. J. Am. Chem. Soc. 2021; 143: 3536
  • 70 Dong Z, MacMillan DW. C. Nature 2021; 598: 451
  • 71 Lin Q, Ma G, Gong H. ACS Catal. 2021; 11: 14102
  • 72 Chi BK, Widness JK, Gilbert MM, Salgueiro DC, Garcia KJ, Weix DJ. ACS Catal. 2022; 12: 580