Synlett 2022; 33(18): 1831-1836
DOI: 10.1055/a-1846-5007
cluster
Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis

Asymmetric Michael Reaction of Malononitrile and α,β-Unsaturated Aldehydes Catalyzed by Diarylprolinol Silyl Ether

,
Yutaro Hatano
,
This work was supported by JSPS KAKENHI Grant Number JP20H04801 in Hybrid Catalysis for Enabling Molecular Synthesis on Demand, and JP19H05630.


Abstract

An asymmetric Michael reaction of malononitrile and α,β-unsaturated aldehydes catalyzed by a diarylprolinol silyl ether was developed. Michael products were obtained in good yields and with excellent enantioselectivities without the formation of overreaction products. As a malononitrile moiety can be transformed into an alkoxy or amino carbonyl moiety by oxidative transformation, α-chiral esters or amides with all-carbon quaternary centers can be synthesized with excellent enantioselectivities.

Supporting Information



Publication History

Received: 23 March 2022

Accepted after revision: 08 May 2022

Accepted Manuscript online:
08 May 2022

Article published online:
09 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 2 Förster S, Tverskoy O, Helmchen G. Synlett 2008; 2803
  • 3 Xiong X.-F, Jia Z.-J, Du W, Jiang K, Liu T.-Y, Chen Y.-C. Chem. Commun. 2009; 6994
    • 4a Li J, Lear MJ, Hayashi Y. Angew. Chem. Int. Ed. 2016; 55: 9060
    • 4b Hayashi Y, Li J, Asano H, Sakamoto D. Eur. J. Org. Chem. 2019; 675
    • 4c Wang X, Li J, Hayashi Y. Chem. Commun. 2021; 57: 4283
    • 5a Nemoto H, Kubota Y, Yamamoto Y. J. Org. Chem. 1990; 55: 4515
    • 5b Nemoto H. Yuki Gosei Kagaku Kyokaishi 2004; 62: 347
  • 6 Corey EJ, Kurti L. Enantioselective Chemical Synthesis, Methods, Logic and Practice. Direct Book Publishing; Dallas: 2010
    • 7a Evans DA. Asymmetric Synthesis, Vol. 3. Morrison JD. Academic Press. Orlando,: 1984 , Chap.1, 1.
    • 7b Evans DA. Aldrichimica Acta 1982; 15: 23
    • 7c Evans DA, Ennis MD, Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
  • 8 Myers AG, Yang BH, Chen H, Gleason JL. J. Am. Chem. Soc. 1994; 116: 9361
  • 9 Ishihara K, Sakakura A. In Comprehensive Organic Synthesis, 2nd ed., Vol. 5, Chap. 5.09. Knochel P. Elsevier; Amsterdam: 2014: 351
  • 10 Ager D. In Comprehensive Organic Synthesis, 2nd ed., Vol. 8, Chap. 8.17. Knochel P. Elsevier; Amsterdam: 2014: 605
    • 11a Krause N, Hoffmann-Röder A. Synthesis 2001; 171
    • 11b Chen W.-Q, Ma J.-A. In Comprehensive Organic Synthesis, 2nd ed., Vol. 4, Chap 4.01. Knochel P. Elsevier; Amsterdam: 2014: 1
  • 12 Yang KS, Nibbs AE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
    • 14a Palomo C, Mielgo A. Angew. Chem. Int. Ed. 2006; 45: 7876
    • 14b Mielgo A, Palomo C. Chem. Asian J. 2008; 3: 922
    • 14c Xu L.-W, Li L, Shi Z.-H. Adv. Synth. Catal. 2010; 352: 243
    • 14d Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 14e Gotoh H, Hayashi Y. In Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries, Chap. 13. Dunn PJ, Hii KK, Krische MJ, Williams MT. Wiley; Hoboken: 2013: 287
    • 14f Donslund BS, Johansen TK, Poulsen PH, Halskov KS, Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 13860
    • 14g Reyes-Rodríguez GJ, Rezayee NM, Vidal-Albalat A, Jørgensen KA. Chem. Rev. 2019; 119: 4221
  • 15 Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
  • 16 Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 794
    • 17a Gotoh H, Ishikawa H, Hayashi Y. Org. Lett. 2007; 9: 5307
    • 17b Palomo C, Landa A, Mielgo A, Oiarbide M, Puente Á, Vera S. Angew. Chem. Int. Ed. 2007; 46: 8431
    • 17c Zu L, Xie H, Li H, Wang J, Wang W. Adv. Synth. Catal. 2007; 349: 2660
  • 18 Brandau S, Landa A, Franzén J, Marigo M, Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 4305
  • 19 Carlone A, Marigo M, North C, Landa A, Jørgensen KA. Chem. Commun. 2006; 4928
    • 20a Li W, Wu W, Yang J, Liang X, Ye J. Synthesis 2011; 1085
    • 20b Gu Y, Wang Y, Yu T.-Y, Liang Y.-M, Xu P.-F. Angew. Chem. Int. Ed. 2014; 53: 14128
    • 20c Hayashi Y, Koshino S, Ojima K, Kwon E. Angew. Chem. Int. Ed. 2017; 56: 11812
    • 20d Hayashi Y, Umekubo N. Angew. Chem. Int. Ed. 2018; 57: 1958
    • 20e Umekubo N, Terunuma T, Kwon E, Hayashi Y. Chem. Sci. 2020; 11: 11293
  • 21 Carlone A, Cabrera S, Marigo M, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 1101
    • 22a Bolze P, Dickmeiss G, Jørgensen KA. Org. Lett. 2008; 10: 3753
    • 22b Umekubo N, Suga Y, Hayashi Y. Chem. Sci. 2020; 11: 1205
    • 23a Tamao K, Ishida N, Tanaka T, Kumada M. Organometallics 1983; 2: 1694
    • 23b Fleming I, Henning R, Plaut H. J. Chem. Soc., Chem. Commun. 1984; 29
  • 24 Hayashi Y, Kawamoto Y, Honda M, Okamura D, Umemiya S, Noguchi Y, Mukaiyama T, Sato I. Chem. Eur. J. 2014; 20: 12072
  • 25 These conditions were developed by our group (unpublished results).
  • 27 Chen G, Gui J, Li L, Liao J. Angew. Chem. Int. Ed. 2011; 50: 7681
  • 28 Asymmetric Michael Reaction; General Procedure To a solution of malononitrile (150 mg, 2.25 mmol) and the appropriate α,β-unsaturated aldehyde 2 (0.750 mmol) in toluene (7.5 mL) were added the diarylprolinol silyl ether organocatalyst (45.2 mg, 0.0750 mmol) and BzOH (9.2 mg, 0.0750 mmol) at 0 °C, and the mixture was stirred at 0 °C until the reaction was complete. CH(OMe)3 (0.410 mL, 3.75 mmol) and TsOH·H2O (43.2 mg, 0.225 mmol) were added, and the mixture was stirred for 1 h at 0 °C. The reaction was then quenched with sat. aq NaHCO3, and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel). [(1R)-3,3-Dimethoxy-1-phenylpropyl]malononitrile (4a) White solid; yield: 84%; mp 67–69 °C. [α]D 26 +29.0 (c 1.00, CHCl3). IR (neat): 2910, 2835, 2255, 1497, 1455, 1370, 1281, 1237, 1189, 1126, 1055, 954, 917, 760, 702, 578 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.44–7.25 (m, 5 H), 4.34 (d, J = 5.6 Hz, 1 H), 4.27 (dd, J = 6.0, 3.6 Hz, 1 H), 3.46 (dt, J = 5.6, 7.2 Hz, 1 H), 3.35 (s, 3 H), 3.34 (s, 3 H), 2.37 (ddd, J = 14.4, 7.2, 6.0 Hz, 1 H), 2.16 (ddd, J = 14.4, 7.2, 3.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 136.90, 129.24, 128.94, 127.85, 112.07, 111.90, 102.69, 54.30, 53.95, 41.80, 34.96, 29.57. HRMS (ESI): m/z [M + Na]+ calcd for C14H16N2NaO2: 267.1104; found: 267.1109.