Synlett 2022; 33(13): 1255-1258
DOI: 10.1055/a-1829-8574
letter

An Efficient Route to Branched Allylsilanes through Copper-Catalyzed Allene Hydrosilylation Using Readily Available Silanes

Xiao-Tao Liu
a   Wanxiang Technology Co., Ltd. Huaian 223300, Jiangsu, P. R. China
,
Jun-Jia Chen
b   Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
,
Zhuang-Ping Zhan
b   Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
› Author Affiliations
Financial support from the National Natural Science Foundation of China (Grant No. 21772166) is gratefully acknowledged.


Abstract

A CuCl-catalyzed hydrosilylation of allenes with PhSiH3 has been developed. It is the first example of using readily available cheap silane reagents to generate branched allylsilanes in copper-catalyzed allene hydrosilylation. This base-metal catalyst offered an atom-economical and efficient route to branched allylsilanes with excellent regioselectivity.

Supporting Information



Publication History

Received: 25 March 2022

Accepted after revision: 20 April 2022

Accepted Manuscript online:
20 April 2022

Article published online:
06 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
    • 1b Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
    • 1c Barbero A, Pulido FJ. Acc. Chem. Res. 2004; 37: 817
    • 1d Sore HF, Galloway WR. J. D, Spring DR. Chem. Soc. Rev. 2012; 41: 1845
    • 2a Sellars JD, Steel PG, Turner MJ. Chem. Commun. 2006; 37: 2385
    • 2b Momiyama N, Nishimoto H, Terada M. Org. Lett. 2011; 13: 2126
  • 3 Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
  • 4 Limnios D, Kokotos CG. ACS Catal. 2013; 3: 2239

    • For selected transition-metal-catalyzed hydrosilylation of allene, see:
    • 5a Wang C, Teo WJ, Ge S. Nat. Commun. 2017; 8: 2258
    • 5b Yang Z, Peng D, Du X, Huang Z, Ma S. Org. Chem. Front. 2017; 4: 1829
    • 5c Asako S, Ishikawa S, Takai K. ACS Catal. 2016; 6: 3387
    • 5d Kidonakis M, Stratakis M. Org. Lett. 2015; 17: 4538
    • 5e Kang S, Hong Y, Lee J, Kim W, Lee I, Yu C. Org. Lett. 2003; 5: 2813
    • 5f Miller ZD, Li W, Belderrain TR, Montgomery J. J. Am. Chem. Soc. 2013; 135: 15282
    • 5g Tafazolian H, Schmidt JA. R. Chem Commun. 2015; 51: 5943
    • 5h Chen J.-J, Zeng J.-H, Yang Y, Liu Z.-K, Jiang Y.-N, Li M.-R, Chen L, Zhan Z.-P. Adv. Synth. Catal. 2020; 362: 2360
    • 5i Zeng J.-H, Chen J.-J, Chen L, Zhan Z.-P. Org. Chem. Front. 2020; 7: 1132
  • 6 Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234 ; and references therein

    • Selected copper-catalyzed hydrosilylation of alkynes with silylboronates:
    • 7a Wang P, Yeo X.-L, Loh T.-P. J. Am. Chem. Soc. 2011; 133: 1254
    • 7b Zhou H, Wang Y.-B. ChemCatChem 2014; 6: 2512
    • 7c Hazra CK, Fopp C, Oestreich M. Chem. Asian J. 2014; 9: 3005
    • 7d García-Rubia A, Romero-Revilla JA, Mauleón P, Gómez Arrayás R, Carretero JC. J. Am. Chem. Soc. 2015; 137: 6857
    • 8a Xu Y.-H, Wu L.-H, Wang J, Loh T.-P. Chem. Commun. 2014; 50: 7195
    • 8b Rae J, Hu YC, Procter DJ. Chem. Eur. J. 2014; 20: 13143
    • 8c Pashikanti S, Calderone JA, Nguyen MK, Sibley CD, Santos WL. Org. Lett. 2016; 18: 2443

      For Cu-catalyzed hydrosilylation of alkene and alkyne with silanes, see:
    • 9a Gribble MW, Pirnot MT, Bandar JS, Liu RY, Buchwald SL. J. Am. Chem. Soc. 2017; 139: 2192
    • 9b Wang Z.-L, Zhang F.-L, Xu J.-L, Shan C.-C, Zhao M, Xu Y.-H. Org. Lett. 2020; 22: 7735
  • 10 Zhou Y.-B, Wang Y.-Q, Ning L.-C, Ding Z.-C, Wang W.-L, Ding C.-K, Li R.-H, Chen J.-J, Lu X, Ding Y.-J, Zhan Z.-P. J. Am. Chem. Soc. 2017; 139: 3966
  • 11 Typical Experimental Procedure for the Synthesis of 3a In a nitrogen-filled Schlenk tube, CuCl (10 mol%), L1 (10 mol%), and THF (2 mL) were added and stirred for 5 min, then 1a (0.3 mmol), phenylsilane (0.33 mmol), and NaEt3BH (20 mol%) were added under N2. The reaction mixture was stirred at 60 °C for 24 h. Upon completion, the solvent was removed by vacuum, and the crude residue was purified by silica gel column chromatography to afford the corresponding products 3a as colorless liquid (84%, 66 mg). Characterization Data of 3a 1H NMR (500 MHz, CDCl3): δ = 7.63–7.51 (m, 2 H), 7.42–7.30 (m, 3 H), 5.73 (ddd, J = 17.2, 10.2, 9.1 Hz, 1 H), 4.93 (dd, J = 10.3, 0.8 Hz, 1 H), 4.89 (dd, J = 17.3, 1.3 Hz, 1 H), 4.29–4.19 (m, 2 H), 2.06–1.96 (m, 1 H), 1.59–1.48 (m, 2 H), 1.46–1.33 (m, 2 H), 1.29–1.22 (m, 10 H), 0.87 (t, J = 7.0 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 139.6, 135.7, 131.4, 129.7, 127.9, 113.2, 31.9, 30.13, 30.08, 29.5, 29.4, 29.3, 29.1, 22.7, 14.1. HRMS (ESI): m/z calcd for C17H28NaSi+ [M + Na]+: 283.1852; found: 283.1851.