Synlett 2022; 33(16): 1582-1588
DOI: 10.1055/a-1828-1217
synpacts

Electrochemical C–H Functionalization of Cyclic Amines

Tian Feng
,
Siyi Wang
,
Youai Qiu
Financial support from the Fundamental Research Funds for the Central Universities (Grant No. 63213063), Frontiers Science Center for New Organic Matter, Nankai University (Grant No. 63181206). And we would like to thank the Open Research Fund (Grant No. 2021JYBKF01) of Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education.


Abstract

Functionalized cyclic amines are essential structural motifs in synthetic chemistry and pharmaceutical chemistry, and Shono-type oxidation is a well-developed electrochemical approach for the synthesis of α- amines. In sharp contrast, electrochemically driven direct β-C(sp3)–H functionalization of amines has been far proven elusive. Herein, we outline the recent advances in this field and highlight our group’s effort to achieve electrochemical β-C(sp3)–H functionalization assisted by ferrocene as molecular electrocatalyst under mild conditions.

1 Introduction

2 Case studies of α-Functionalization (Shono-Type Oxidation)

3 Electrochemical β-C(sp3)–H Acylation

4 Conclusion



Publication History

Received: 06 April 2022

Accepted after revision: 18 April 2022

Accepted Manuscript online:
18 April 2022

Article published online:
20 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
    • 1b Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 1c Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 1d Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal. 2018; 8: 7086
    • 1e Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 1f Wang H, Gao X, Abdelilah ZT, Lei A. Chem. Rev. 2019; 119: 6769
    • 1g Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 1h Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res. 2020; 53: 45
    • 1i Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
    • 1j Jiao K.-J, Xing Y.-K, Yang Q.-L, Qiu H, Mei T.-S. Acc. Chem. Res. 2020; 53: 300
    • 1k Novaes LF. T, Liu J.-J, Shen Y.-F, Lu L.-X, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 1l Qiu Y, Zhu C, Stangier M, Struwe J, Ackermann L. CCS Chem. 2020; 2: 1529
    • 1m Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
    • 1n Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
    • 1o Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087

      For selected examples of electrochemical C–H activation, see:
    • 2a Kakiuchi F, Kochi T, Mutsutani H, Kobayashi N, Urano S, Sato M, Nishiyama S, Tanabe T. J. Am. Chem. Soc. 2009; 131: 11310
    • 2b O’Brien AG, Maruyama A, Inokuma Y, Fujita M, Baran PS, Blackmond DG. Angew. Chem. Int. Ed. 2014; 53: 11868
    • 2c Yang Q.-L, Li Y.-Q, Ma C, Fang P, Zhang X.-J, Mei T.-S. J. Am. Chem. Soc. 2017; 139: 3293
    • 2d Sauermann N, Meyer TH, Tian C, Ackermann L. J. Am. Chem. Soc. 2017; 139: 18452
    • 2e Gao X, Wang P, Zeng L, Tang S, Lei A. J. Am. Chem. Soc. 2018; 140: 4195
    • 2f Qiu Y, Tian C, Massignan L, Rogge T, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5818
    • 2g Yang Q.-L, Wang X.-Y, Lu J.-Y, Zhang L.-P, Fang P, Mei T.-S. J. Am. Chem. Soc. 2018; 140: 11487
    • 2h Liang Y, Lin F, Adeli Y, Jin R, Jiao N. Angew. Chem. Int. Ed. 2019; 58: 4566
    • 2i Wu Z.-J, Su F, Lin W, Song J, Wen T.-B, Zhang H.-J, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 16770
    • 2j Shen T, Lambert TH. J. Am. Chem. Soc. 2021; 143: 8597
    • 2k Ruan Z, Huang Z, Xu Z, Zeng S, Feng P, Sun P.-H. Sci. China: Chem. 2021; 64: 800

      For selected examples of electrochemical alkene difunctionalizations, see:
    • 3a Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
    • 3b Cai C.-Y, Xu H.-C. Nat. Commun. 2018; 9: 3551
    • 3c Yuan Y, Cao Y, Lin Y, Li Y, Huang Z, Lei A. ACS Catal. 2018; 8: 10871
    • 3d Cai C.-Y, Shu X.-M, Xu H.-C. Nat. Commun. 2019; 10: 4953
    • 3e Song L, Fu N, Ernst BG, Lee WH, Frederick MO, DiStasio RA. Jr, Lin S. Nat. Chem. 2020; 12: 747
    • 3f Huang H, Lambert TH. J. Am. Chem. Soc. 2021; 143: 7247
    • 3g Chung DS, Park SH, Lee S.-G, Kim H. Chem. Sci. 2021; 12: 5892

      For selected examples of electrochemical C–H oxidations, see:
    • 4a Bäckvall J.-E, Gogoll A. J. Chem. Soc., Chem. Commun. 1987; 1236
    • 4b Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS. Nature 2016; 533: 77
    • 4c Waldvogel SR, Selt M. Angew. Chem. Int. Ed. 2016; 55: 12578
    • 4d Xiong P, Zhao H.-B, Fan X.-T, Jie L.-H, Long H, Xu P, Liu Z.-J, Wu Z.-J, Cheng J, Xu H.-C. Nat. Commun. 2020; 11: 2706

      For selected examples of electrochemical cross-coupling reactions, see:
    • 5a Kirste A, Schnakenburg G, Stecker F, Fischer A, Waldvogel SR. Angew. Chem. Int. Ed. 2010; 49: 971
    • 5b Wang P, Tang S, Huang P, Lei A. Angew. Chem. Int. Ed. 2017; 56: 3009
    • 5c Wu Z.-J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 4734
    • 5d Liu D, Ma H.-X, Fang P, Mei T.-S. Angew. Chem. Int. Ed. 2019; 58: 5033
    • 5e Li Z.-J, Sun W.-X, Wang X.-X, Li L.-Y, Zhang Y, Li C. J. Am. Chem. Soc. 2021; 143: 3536
    • 5f Zhang H.-J, Chen L, Oderinde MS, Edwards JT, Kawamata Y, Baran PS. Angew. Chem. Int. Ed. 2021; 60: 20700

      For selected examples of other electrochemical synthesis, see:
    • 6a Xiang J, Shang M, Kawamata Y, Lundberg H, Reisberg SH, Chen M, Mykhailiuk P, Beutner G, Collins MR, Davies A, Del Bel M, Gallego GM, Spangler JE, Starr J, Yang S, Blackmond DG, Baran PS. Nature 2019; 573: 398
    • 6b He T.-J, Ye Z.-R, Ke Z.-F, Huang J.-M. Nat. Commun. 2019; 10: 833
    • 6c Ye X.-H, Zhao P.-Y, Zhang S.-Y, Zhang Y.-B, Wang Q.-L, Shan C, Wojtas L, Guo H, Chen H, Shi X.-D. Angew. Chem. Int. Ed. 2019; 58: 17226
    • 6d Xu Z, Li Y, Mo G, Zheng Y, Zeng S, Sun P.-H, Ruan Z. Org. Lett. 2020; 22: 4016
    • 6e Yang L, Steinbock R, Scheremetjew A, Kuniyil R, Finger LH, Messinis AM, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 11130
    • 6f Li L, Li Y, Fu N, Zhang L, Luo S. Angew. Chem. Int. Ed. 2020; 59: 14347
    • 6g Liu X, Liu R, Qiu J, Cheng X, Li G. Angew. Chem. Int. Ed. 2020; 59: 13962
    • 6h Dong X.-C, Roeckl JL, Waldvogel SR, Morandi B. Science 2021; 371: 507
    • 6i Ke J, Liu W.-T, Zhu X.-J, Tan X.-F, He C. Angew. Chem. Int. Ed. 2021; 60: 8744
    • 6j Qin J.-H, Luo M.-J, An D.-L, Li J.-H. Angew. Chem. Int. Ed. 2021; 60: 1861
    • 6k Liang Y, Shi S.-H, Jin R, Qiu X, Wei J, Tan H, Jiang X, Shi X, Song S, Jiao N. Nat. Catal. 2021; 4: 116
    • 6l Shen T, Lambert TH. Science 2021; 371: 620
    • 7a Badalyan A, Stahl SS. Nature 2016; 535: 406
    • 7b Xiong P, Xu H.-H, Song J, Xu H.-C. J. Am. Chem. Soc. 2018; 140: 2460
    • 7c Galvin CM, Waymouth RM. J. Am. Chem. Soc. 2020; 142: 19368
    • 7d Saito M, Kawamata Y, Meanwell M, Navratil R, Chiodi D, Carlson E, Hu P, Chen L, Udyavara S, Kingston C, Tanwar M, Tyagi S, McKillican BP, Gichinga MG, Schmidt MA, Eastgate MD, Lamberto M, He C, Tang T, Malapit CA, Sigman MS, Minteer SD, Neurock M, Baran PS. J. Am. Chem. Soc. 2021; 143: 7859
    • 7e Wang Z.-H, Gao P.-S, Wang X, Gao J.-Q, Xu X.-T, He Z, Ma C, Mei T.-S. J. Am. Chem. Soc. 2021; 143: 15599
    • 8a Tomooka K, Suzuki M, Shimada M, Yanagitsuru S, Uehara K. Org. Lett. 2006; 8: 963
    • 8b Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. Chem. Eur. J. 2012; 18: 10092
    • 8c Vo CV, Bode JW. J. Org. Chem. 2014; 79: 2809
    • 8d Beatty JW, Stephenson CR. Acc. Chem. Res. 2015; 48: 1474
    • 8e Reddy RS, Lagishetti C, Chaithanya Kiran IN, You H, He Y. Org. Lett. 2016; 18: 3818
    • 8f Reddy RS, Zheng S, Lagishetti C, You H, He Y. RSC Adv. 2016; 6: 68199
    • 8g You H, Vegi S, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
    • 8h Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
    • 8i Lagishetti C, Banne S, You H, Tang M, He Y. Org. Lett. 2019; 21: 5301
    • 8j He Y, Zheng Z, Yang J.-T, Zhang X.-Y, Fan X.-S. Org. Chem. Front. 2021; 8: 4582
    • 8k Chen W, Seidel D. Synthesis 2021; 53: 3869
    • 8l Dutta S, Li B, Rickertsen DR. L, Valles DA, Seidel D. SynOpen 2021; 5: 173
  • 9 Matsumura Y, Hamaguchi H, Shono T. J. Am. Chem. Soc. 1975; 97: 4264
    • 10a Yamamoto K, Kuriyama M, Onomura O. Acc. Chem. Res. 2020; 53: 105
    • 10b Yamamoto K, Kuriyama M, Onomura O. Chem. Rec. 2021; 21: 22
    • 11a Suga S, Okajima M, Fujiwara K, Yoshida JI. J. Am. Chem. Soc. 2001; 123: 7941
    • 11b Yoshida JI, Suga S. Chem. Eur. J. 2002; 8: 2650
  • 12 Wang F, Rafiee M, Stahl SS. Angew. Chem. Int. Ed. 2018; 57: 6686
  • 13 Novaes LF. T, Ho Justin SK, Mao K, Liu K, Tanwar M, Neurock M, Villemure E, Terrett JA, Lin S. J. Am. Chem. Soc. 2022; 144: 1187
    • 14a Barreiro EJ, Kümmerle AE, Fraga CA. M. Chem. Rev. 2011; 111: 5215
    • 14b Schönherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
    • 14c Aynetdinova D, Callens MC, Hicks HB, Poh CY. X, Shennan BD. A, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Chem. Soc. Rev. 2021; 50: 5517
  • 15 Gao P.-S, Weng X.-J, Wang Z.-H, Zheng C, Sun B, Chen Z.-H, You S.-L, Mei T.-S. Angew. Chem. Int. Ed. 2020; 59: 15254
  • 16 Feng T, Wang S, Liu Y, Liu S, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202115178
  • 17 Alfonso-Súarez P, Kolliopoulos AV, Smith JP, Banks CE, Jones AM. Tetrahedron Lett. 2015; 56: 6863