Synthesis 2022; 54(15): 3307-3316
DOI: 10.1055/a-1822-4690
short review

Research Progress on N-Heterocyclic Carbene Catalyzed Reactions for Synthesizing Ketones through Radical Mechanism

Dan-Hong Wan
,
Hai-Bin Yang
This work was sponsored by financial support from the 100 Young Talents Programme of Guangdong University of Technology (No. 220413292).


Abstract

NHC-catalyzed radical cross-coupling reactions have been recently developed; they provide an efficient method to access ketones from aldehydes or carboxylic acid derivatives with sp3-hybridized carbon radical precursors. This reaction has indirectly solved the limitations in the scope of coupling partners in NHC umpolung catalyzed reactions of aldehydes. In this short review, we present some recent advances in NHC-catalyzed radical reactions, with a focus on the construction of the C–C(CO) bond.

1 Introduction

2 Oxidative Generation of NHC-Derived Ketyl Radical

2.1 NHPI Redox-Active Esters

2.2 Katritzky Pyridinium Salts

2.3 Alkyl Halides

2.4 Aryl Halides

2.5 Compounds Containing N–O Bond

2.6 Diazo Esters

2.7 Others

3 Reductive Generation of NHC-Derived Ketyl Radical

3.1 Hantzsch Esters

3.2 Sulfinates

3.3 Electron-Rich Arenes

3.4 Amines

3.5 Organoborane Reagents

4 Conclusion



Publication History

Received: 14 March 2022

Accepted after revision: 11 April 2022

Accepted Manuscript online:
11 April 2022

Article published online:
09 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Vlasses PH, Rotmensch HH, Swanson BN, Irvin JD, Johnson CL, Ferguson RK. Pharmacotherapy 1984; 4: 272
    • 1b Pérez-Vizcaino F, Carrón R, Delpón E, Tamargo J. Eur. J. Pharmacol. 1991; 199: 43
    • 1c Yang Y, Li S.-Y, Bao R.-Y, Liu Z.-Y, Yang M.-B, Tan C.-B, Yang W. Polym. Int. 2018; 67: 1478
    • 1d Brenna E, Fuganti C, Serra S, Kraft P. Eur. J. Org. Chem. 2002; 967
  • 2 Corey EJ, Cheng X.-M. The Logic of Chemical Synthesis . Wiley; New York: 1989
  • 4 N-Heterocyclic Carbenes in Organocatalysis . Biju AT. Wiley-VCH; Weinheim: 2019
  • 5 Lin L, Li Y, Du W, Deng W.-P. Tetrahedron Lett. 2010; 51: 3571
    • 6a Ishii T, Nagao K, Ohmiya H. Chem. Sci. 2020; 11: 5630
    • 6b Liu J, Xing X.-N, Huang J.-H, Lu L.-Q, Xiao W.-J. Chem. Sci. 2020; 11: 10605
    • 6c Li Q.-Z, Zeng R, Han B, Li J.-L. Chem. Eur. J. 2021; 27: 3238
    • 6d Dai L, Ye S. Chin. Chem. Lett. 2021; 32: 660
  • 7 Leifert D, Studer A. Angew. Chem. Int. Ed. 2020; 59: 74
    • 8a Nakanishi I, Itoh S, Suenobu T, Fukuzumi S. Angew. Chem. Int. Ed. 1998; 37: 992
    • 8b Nakanishi I, Itoh S, Fukuzumi S. Chem. Eur. J. 1999; 5: 2810
  • 9 Delfau L, Nichilo S, Molton F, Broggi J, Tomás-Mendivil E, Martin D. Angew. Chem. Int. Ed. 2021; 60: 26783
  • 10 Parida SK, Mandal T, Das S, Hota SK, Sarkar SD, Murarka S. ACS Catal. 2021; 11: 1640
    • 11a Ishii T, Kakeno Y, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 3854
    • 11b Kakeno Y, Kusakabe M, Nagao K, Ohmiya H. ACS Catal. 2020; 10: 8524
  • 12 Ishii T, Ota K, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 14073
    • 13a Walling C, Cioffari A. J. Am. Chem. Soc. 1972; 94: 6059
    • 13b Fischer H, Radom L. Angew. Chem. Int. Ed. 2001; 40: 1340
  • 14 Kim I, Im H, Lee H, Hong S. Chem. Sci. 2020; 11: 3192
    • 15a Li J.-L, Liu Y.-Q, Zou W.-L, Zeng R, Zhang X, Liu Y, Han B, He Y, Leng H.-J, Li Q.-Z. Angew. Chem. Int. Ed. 2020; 59: 1863
    • 15b Zhang B, Peng Q, Guo D, Wang J. Org. Lett. 2020; 22: 443
    • 15c Yang H.-B, Wang Z.-H, Li J.-M, Wu C. Chem. Commun. 2020; 56: 3801
  • 16 Ni C, Hu J. Chem. Soc. Rev. 2016; 45: 5441
    • 17a Chen L, Lin C, Zhang S, Zhang X, Zhang J, Xing L, Guo Y, Feng J, Gao J, Du D. ACS Catal. 2021; 11: 13363
    • 17b Cai Y, Chen J, Huang Y. Org. Lett. 2021; 23: 9251
    • 17c Liu Y.-Q, Li Q.-Z, Kou X.-X, Zeng R, Qi T, Zhang X, Peng C, Han B, Li J.-L. J. Org. Chem. 2022; 87: 5229
    • 18a Ota K, Nagao K, Ohmiya H. Org. Lett. 2020; 22: 3922
    • 18b Ishii T, Nagao K, Ohmiya H. Tetrahedron 2021; 91: 132212
  • 19 Kusakabe M, Nagao K, Ohmiya H. Org. Lett. 2021; 23: 7242
  • 20 Liu W, Vianna A, Zhang Z, Huang S, Huang L, Melaimi M, Bertrand G, Yan X. Chem Catal. 2021; 1: 196
  • 21 Matsuki Y, Ohnishi N, Kakeno Y, Takemoto S, Ishii T, Nagao K, Ohmiya H. Nat. Commun. 2021; 12: 3848
  • 22 Xiao T, Huang H, Anand D, Zhou L. Synthesis 2020; 52: 1585
    • 23a Yang H.-B, Wan D.-H. Org. Lett. 2021; 23: 1049
    • 23b Zhang Z, Zou X, Li Z, Gao Y, Qu Y, Quan Y, Zhou Y, Li J, Sun J, Guo K. Org. Chem. Front. 2021; 8: 6074
    • 24a Gao Y, Quan Y, Li Z, Gao L, Zhang Z, Zou X, Yan R, Qu Y, Guo K. Org. Lett. 2021; 23: 183
    • 24b Chen L, Jin S, Gao J, Liu T, Shao Y, Feng J, Wang K, Lu T, Du D. Org. Lett. 2021; 23: 394
  • 25 Banerjee A, Lei Z, Ngai MY. Synthesis 2019; 51: 303
  • 26 Jin S, Sui X, Haug GC, Nguyen VD, Dang HT, Arman HD, Larionov OV. ACS Catal. 2022; 12: 285
  • 27 Chen H, Yu S. Org. Biomol. Chem. 2020; 18: 4519
  • 28 Man Y, Liu S, Xu B, Zeng X. Org. Lett. 2022; 24: 944
  • 29 Li Q.-Z, Zeng R, Fan Y, Liu Y.-Q, Qi T, Zhang X, Li J.-L. Angew. Chem. Int. Ed. 2022; in press DOI: 10.1002/anie.202116629.
  • 30 Zhang B, Qi J.-Q, Liu Y, Li Z, Wang J. Org. Lett. 2022; 24: 279
  • 31 Liu M.-S, Min L, Chen B.-H, Shu W. ACS Catal. 2021; 11: 9715
    • 32a Bayly AA, McDonald BR, Mrksich M, Scheidt KA. Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 13261
    • 32b Davies AV, Fitzpatrick KP, Betori RC, Scheidt KA. Angew. Chem. Int. Ed. 2020; 59: 9143
    • 32c Bay AV, Fitzpatrick KP, Gonzalez-Montiel GA, Farah AO, Cheong PH.-Y, Scheidt KA. Angew. Chem. Int. Ed. 2021; 60: 17925
  • 33 Ren S.-C, Lv W.-X, Yang X, Yan J.-L, Xu J, Wang F.-X, Hao L, Chai H, Jin Z, Chi YR. ACS Catal. 2021; 11: 2925
  • 34 Bay AV, Farnam EJ, Scheidt KA. J. Am. Chem. Soc. 2022; 144: 7030
  • 35 Meng Q.-Y, Döben N, Studer A. Angew. Chem. Int. Ed. 2020; 59: 19956
  • 36 Liu K, Studer A. J. Am. Chem. Soc. 2021; 143: 4903
  • 37 Wang L, Ma R, Sun J, Zheng G, Zhang Q. Chem. Sci. 2022; 13: 3169
  • 38 Meng Q.-Y, Lezius L, Studer A. Nat. Commun. 2021; 12: 2068
  • 39 Zuo Z, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2021; 60: 25252
  • 40 Yu X, Meng Q.-Y, Daniliuc CG, Studer A. J. Am. Chem. Soc. 2022; 144: 7072
  • 41 Wang X, Zhu B, Liu Y, Wang Q. ACS Catal. 2022; 12: 2522
  • 42 Sato Y, Goto Y, Nakamura K, Miyamoto Y, Sumida Y, Ohmiya H. ACS Catal. 2021; 11: 12886
  • 43 Wang P, Fitzpatrick KP, Scheidt KA. Adv. Synth. Catal. 2022; 364: 518
  • 44 Huang H, Dai Q.-S, Leng H.-J, Li Q.-Z, Yang S.-L, Tao Y.-M, Zhang X, Qi T, Li J.-L. Chem. Sci. 2022; 13: 2584
  • 45 In the aldehyde participated reactions, the direct cross-coupling process of NHC-derived ketyl radical with fluoroalkyl, primary alkyl, or aryl radical is problematic.