Synlett 2022; 33(11): 1052-1058
DOI: 10.1055/a-1817-0882
letter

DBU- and DABCO-Promoted Selective Access to 2,5-Diarylnitrobenzoates and Cyclohexenones via One-Pot Reactions

Shikha Singh Rathor
,
Debashis Majee
,
The authors thank SERB-DST research grant (CRG/2018/001111), Government of India for generous financial support and SIC facility, Indian Institute of Technology (IIT) Indore.


Abstract

Remarkable organobase-controlled selective synthesis of a wide breadth of valuable 2,5-diaryl-4-nitrobenzoates and 1-hydroxy-4-oxocyclohexencarboxylates bearing a tetrasubstituted stereogenic carbon is reported. This one-pot cyclization reaction operates between a bunch of 3-nitroallylarenes and β,γ-unsaturated α-ketocarbonyls by carefully choosing DBU or DABCO as an organobase under aerobic conditions. Notably, as a nucleophilic base, DABCO favors the Nef reaction over the dehydration–aerial oxidation process, aiming for unexpected cyclohexanone architectures. Moreover, this operationally simple technique holds a few positive qualities: good yields with diastereoselectivities (dr ≤ 91:9), broad substrate scope, no added oxidant, excellent functional group compatibility, 100% carbon-economical, etc. Furthermore, the obtained 4-nitrobenzoate framework has been utilized for the synthesis of a range of valuable compounds such as 2-phenylcarbazole-3-carboxylate, 3-bromoaniline derivative, and 2,5-diphenylbenzoic acid, among others.

Supporting Information



Publication History

Received: 01 February 2022

Accepted after revision: 05 April 2022

Accepted Manuscript online:
05 April 2022

Article published online:
09 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Notes and References

    • 1a Zhao Q, Peng C, Zhan G, Han B. RSC Adv. 2020; 10: 40983
    • 1b Link A, Sparr C. Chem. Soc. Rev. 2018; 47: 3804
    • 1c van Otterlo WA. L, de Koning CB. Chem. Rev 2009; 109: 3743
    • 1d Liu Y, Bakshi K, Zavalij P, Doyle MP. Org. Lett. 2010; 12: 4304
    • 1e Poudel TN, Lee YR. Org. Lett. 2015; 17: 2050
    • 1f Joshi PR, Undeela S, Reddy DD, Singarapu KK, Menon RS. Org. Lett. 2015; 17: 1449
    • 1g Yang S, Lu D, Huo H, Luo F, Gong Y. Org. Lett. 2018; 20: 6943
    • 1h Swami B, Yadav D, Menon RS. Chem. Rec. 2022; 22: e202100249
    • 1i Obydennov DL, Chernyshova EV, Sosnovskikh VY. J. Org. Chem. 2019; 84: 6491
    • 2a Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 2b Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discovery 2018; 17: 709
    • 2c The Chemistry of Phenols. Rappoport Z. John Wiley & Sons; New York: 2003
    • 2d Hunger K. Industry Dyes: Chemistry, Properties and Applications. Wiley-VCH; Weinheim: 2003
    • 2e Lawrence SA. Amines: Synthesis, Properties and Application . Cambridge University Press; Cambridge: 2004
    • 2f Vogt PF, Gerulis JJ. Amines, Aromatic. In Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim: 2005
    • 2g Chemistry of Anilines, Part 1. In Patai Series: The Chemistry of Functional Groups. Rappoport Z. John Wiley & Sons; Chichester: 2007
    • 2h Ju K.-S, Parales RE. Microbiol. Mol. Biol. Rev. 2010; 74: 250
    • 3a Liang K, Lu L, Liu X, Yang D, Wang S, Gao Y, Alhumade H, Yi H, Lei A. ACS Catal. 2021; 11: 14892
    • 3b Roglans A, Pla-Quintana A, Solà M. Chem. Rev. 2021; 121: 1894
    • 4a Zhou S, Yan B.-W, Fan S.-X, Tian J.-S, Loh T.-P. Org. Lett. 2018; 20: 3975
    • 4b Liang G, Rong J, Sun W, Chen G, Jiang Y, Loh T.-P. Org. Lett. 2018; 20: 7326
  • 5 Yin L, Xu M, Wang Y, Xie H, Yuan Y, Wang C, Jiang Y.-Y, Li Y. J. Org. Chem. 2021; 86: 112158
    • 6a Anson CW, Stahl SS. J. Am. Chem. Soc. 2017; 139: 18472
    • 6b Liang Y.-F, Li X, Wang X, Zou MC, Tang CH, Liang YJ, Song S, Jiao N. J. Am. Chem. Soc. 2016; 138: 12271
    • 6c Iosub AV, Stahl SS. ACS Catal. 2016; 6: 8201
  • 7 Shu W.-M, Zheng K.-L, Ma J.-R, Wu A.-X. Org. Lett. 2015; 17: 5216
  • 8 Shally IA, Shaw R, Elagamy A, Kumar A, Pratap R. Org. Biomol. Chem. 2020; 18: 6407
    • 9a Feng B, Yang Y, You J. Chem. Sci. 2020; 11: 6031
    • 9b Shen N, Zhai S.-J, Cheung CW, Ma J.-A. Chem. Commun. 2020; 56: 9620
    • 9c Okita T, Asahara KK, Muto K, Yamaguchi J. Org. Lett. 2020; 22: 3205
    • 9d Chen K, Chen W, Han B, Chen W, Liu M, Wu H. Org. Lett. 2020; 22: 1841
    • 9e Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La CruzT. E, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
    • 9f Cheung CW, Hu X. Nat. Commun. 2016; 7: 12494
    • 9g Cheung CW, Ploeger ML, Hu X. Chem. Sci. 2018; 9: 655
    • 9h Muto K, Okita T, Yamagachi J. ACS Catal. 2020; 10: 9856
    • 9i Tejedor D, Prieto-Ramírez MC, Ingold M, Chicón M, García-Tellado F. Org. Lett. 2016; 18: 2770
    • 10a Remennikov GY. Chem. Heterocycl. Compd. 2017; 53: 101
    • 10b Fukushi Y, Yoshino H, Ishikawa J, Sagisaka M, Kashiwakura I, Yoshizawa A. J. Mater. Chem. B 2014; 2: 1335
    • 10c Olmo AD, Calzada J, Nuñez M. Crit. Rev. Food Sci. Nutr. 2017; 57: 3084
    • 11a Aromatic Nitrations . Schofiled K. Cambridge University Press; Cambridge: 1980
    • 11b Olah GA, Malhotra R, Narang SC. Nitration: Methods and Mechanism . VCH; New York: 1989
    • 11c Kulkarni AK. Beilstein J. Org. Chem. 2014; 10: 405
    • 12a Fors BP, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 12898
    • 12b Zhang K, Budinská A, Passera A, Katayev D. Org. Lett. 2020; 22: 2714
    • 12c Calvo R, Zhang K, Passera A, Katayev D. Nat. Commun. 2019; 10: 3410
    • 12d Wu X.-F, Schranck J, Neumann H, Beller M. Chem. Commun. 2011; 47: 12462
    • 13a Song L.-R, Fan Z, Zhang A. Org. Biomol. Chem. 2019; 17: 1351
    • 13b Liang Y.-F, Li X, Wang X, Yan Y, Feng P, Jiao N. ACS Catal. 2015; 5: 1956
    • 13c Fan Z, Ni J, Zhang A. J. Am. Chem. Soc. 2016; 138: 8470
    • 13d Li Y.-X, Li L.-H, Yang Y.-F, Hua H.-L, Yan X.-B, Zhao L.-B, Zhang J.-B, Ji F.-J, Liang Y.-M. Chem. Commun. 2014; 50: 9936
    • 14a Gupta S, Ansaria A, Sashidhara KV. Tetrahedron Lett. 2019; 60: 151076
    • 14b Ravi K, Bankar BD, Jindani S, Biradar AV. ACS Omega 2019; 4: 9453
    • 15a McNulty J, Nair JJ, Robertson A. Org. Lett. 2007; 9: 4575
    • 15b Sharma P, Rohilla S, Jain N. J. Org. Chem. 2017; 82: 1105
    • 16a Luo H, Li Y, Du L, Xin X, Wang T, Han J, Tian Y, Li B. Org. Lett. 2021; 23: 7883
    • 16b Hara H, Hirano M, Tanaka K. Org. Lett. 2008; 10: 2537
    • 16c Sau MC, Bhattacharjee M. RSC Adv. 2020; 10: 36014
    • 16d Kuninobu Y, Nishi M, Kawata A, Takata H, Hanatani Y, Yudha SS, Iwai A, Takai K. J. Org. Chem. 2010; 75: 334
    • 16e Kuninobu Y, Nishi M, Yudha S, Takai K. Org. Lett. 2008; 10: 3009
    • 16f Tsuji H, Yamagata K.-i, Fujimoto T, Nakamura E. J. Am. Chem. Soc. 2008; 130: 7792
  • 17 Yan CG, Song XK, Wang QF, Sun J, Siemeling U, Bruhn C. Chem. Commun. 2008; 1440
  • 18 Majee D, Goud SB, Guin S, Rathor SS, Patel AK, Samanta S. Asian J. Org. Chem. 2021; 10: 1650
    • 19a Yadav A, Srivastava A, Mobin SM, Samanta S. ChemistrySelect 2019; 4: 858
    • 19b Dagar A, Biswas S, Mobin SM, Samanta S. ChemistrySelect 2016; 1: 6362
    • 19c Dagar A, Biswas S, Mobin SM, Samanta S. Tetrahedron Lett. 2016; 57: 3326
    • 19d Biswas S, Dagar A, Srivastava A, Samanta S. Eur. J. Org. Chem. 2015; 4493
    • 19e Biswas S, Majee D, Dagar A, Samanta S. Synlett 2014; 25: 2115
    • 19f Jaiswal PK, Biswas S, Singh S, Samanta S. Org. Biomol. Chem. 2013; 11: 8410
  • 20 Typical Procedure for the Synthesis of Ethyl 5′-Nitro-[1,1′:4′,1′′-terphenyl]-2′-carboxylate (3aa)To a mixture of compounds 1a (32.63 mg, 0.2 mmol) and 2a (51.1 mg, 0.25 mmol) in dry toluene (1.0 mL) was added DBU (0.02 mmol, 10 mol%) at room temperature for 30 min, followed by the addition of DBU (0.28 mmol, 1.4 equiv) further. Afterwards, the reaction mixture was heated at 80 °C under air for 12 h. Then, the reaction mixture was extracted with EtOAc (3 × 10 mL) before being quenched with a few drops of aqueous HCl. The combined organic phases were washed with brine and dried over Na2SO4. The solvent was evaporated under reduced pressure to give the crude residue. Then it was purified through column chromatography over silica gel using ethyl acetate/hexane (1:19) as a mixture of solvent to provide a pure colorless solid 3aa (45.8 mg; 66% yield). The product was characterized by its spectroscopic data (1H and 13C NMR, HRMS); mp 118–120 °C. 1H NMR (500 MHz, CDCl3): δ = 7.88 (s, 1 H), 7.85 (s, 1 H), 7.48–7.43 (6 H), 7.41–7.34 (m, 4 H), 4.14 (q, J = 7.1 Hz, 2 H), 1.02 (t, J = 7.1 Hz, 3 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 167.1, 150.1, 142.5, 138.8, 136.2, 135.0, 134.9, 133.3, 129.0, 128.8, 128.6, 128.4, 128.3, 128.0, 125.9, 61.8, 13.7 ppm. HRMS (ESI): m/z calcd for C21H17NNaO4 [M + Na]+: 370.1055; found: 370.1057.The above procedure was followed for the access to ethyl 4′′-methoxy-5′-nitro-[1,1′:4′,1′′-terphenyl]-2′-carboxylate (3ac): light yellowish solid; mp 126–128 °C; yield 57% (43.0 mg). 1H NMR (500 MHz, CDCl3): δ = 7.86 (s, 1 H), 7.79 (s, 1 H), 7.43 (t, J = 7.1 Hz, 3 H), 7.36 (dd, J = 7.7, 1.8 Hz, 2 H), 7.31 (d, J = 8.6 Hz, 2 H), 6.98 (d, J = 8.7 Hz, 2 H), 4.13 (q, J = 7.1 Hz, 2 H), 3.86 (s, 3 H), 1.01 (t, J = 7.1 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.2, 160.1, 150.2, 142.0, 138.9, 134.7, 134.5, 133.3, 129.3, 128.5, 128.3, 128.3, 128.2, 125.9, 114.4, 61.8, 55.4, 13.7 ppm. HRMS (ESI): m/z calcd for C22H19NNaO5 [M + Na]+: 400.1161; found: 400.1159.
  • 21 Representative Procedure for the Synthesis of 4aaTo a stirred solution of 1a (32.63 mg, 0.2 mmol) and 2a (51.1 mg, 0.25 mmol) in dry toluene (1.0 mL) was added DABCO (0.02 mmol, 10 mol%) at room temperature for 30 min under air. Afterwards, DABCO (0.28 mmol, 1.4 equiv) was added to the above solution at 60 °C in an open atmosphere for 15 h. Then, the reaction mixture was quenched with a very diluted HCl, followed by the extraction using EtOAc (3 × 10 mL) and dried over Na2SO4. After evaporation of the solvent, the crude residue was purified through column chromatography over silica gel using ethyl acetate/hexane (1:15) as a mixture of solvent to provide a pure colorless solid 4aa (45.1 mg, 67% yield); mp 115–117 °C; dr = 91:9; yield 67%. 1H NMR (500 MHz, CDCl3): δ = 7.53 (dd, J = 5.3, 3.3 Hz, 2 H), 7.38–7.35 (m, 5 H), 7.31–7.29 (m, 1 H), 7.22 (d, J = 7.1 Hz, 2 H), 6.40 (s, 1 H), 4.33 (dd, J = 13.5, 4.3 Hz, 1 H), 4.08–4.02 (m, 1 H), 3.95–3.90 (m, 2 H), 2.89 (t, J = 13.4 Hz, 1 H), 2.32 (dd, J = 13.3, 4.4 Hz, 1 H), 0.80 (t, J = 7.1 Hz, 3 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 198.2, 175.1, 154.4, 138.2, 137.5, 129.6, 129.4, 129.0, 128.79, 128.78, 127.4, 126.7, 74.8, 63.0, 48.3, 43.7, 13.5 ppm. HRMS (ESI): m/z calcd for C21H20NaO4 [M + Na]+: 359.1259; found: 359.1266.
    • 22a Yang X, Wang J, Li P. Org. Biomol. Chem. 2014; 12: 2499
    • 22b Varner MA, Grossman RB. Tetrahedron 1999; 55: 13867
    • 22c Klunder AJ. H, Zhu J, Zwanenburg B. Chem. Rev. 1999; 99: 1163
    • 22d Sun P, Ao J, Qiao T, Wu S, Liang G. J. Org. Chem. 2021; 86: 11040
    • 22e Sun P, Zhang C, Qiao T, Ao J, Wu S, Liang G. Org. Lett. 2020; 22: 4848
    • 23a Borissov A, Davies TQ, Ellis SR, Fleming TA, Richardson MS. W, Dixon DJ. Chem. Soc. Rev. 2016; 45: 5474
    • 23b Quintard A, Rodriguez J. Chem. Commun. 2015; 51: 9523
    • 23c Kimaru N, Komatsuki K, Saito K, Yamada T. Chem. Commun. 2021; 57: 6133
    • 23d Zhang Q, Zhang F.-M, Zhang C.-S, Liu S.-Z, Tian J.-M, Wang S.-H, Zhang X.-M, Tu Y.-Q. Nat. Commun. 2019; 10: 2507
    • 23e Du J.-Y, Zeng C, Han X.-J, Qu H, Zhao X.-H, An X.-T, Fan C.-A. J. Am. Chem. Soc. 2015; 137: 4267
    • 23f Tang L, Luo Y, Xue J.-W, He Y.-H, Guan Z. Tetrahedron 2017; 73: 1114
    • 23g Bertuletti S, Bayout I, Bassanini I, Ferrandi EE, Bouzemi N, Monti D, Riva S. Eur. J. Org. Chem. 2021; 3992
    • 23h Golec JC, Carter EM, Ward JW, Whittingham WG, Simón L, Paton RS, Dixon DJ. Angew. Chem. Int. Ed. 2020; 59: 17417
  • 24 Umemiya S, Nishino K, Sato I, Hayashi Y. Chem. Eur. J. 2014; 20: 15753
  • 25 Freeman AW, Urvoy M, Criswell ME. J. Org. Chem. 2005; 70: 5014
  • 26 Dai J.-J, Xu W.-T, Wu Y.-D, Zhang W.-M, Gong Y, He X.-P, Zhang X.-Q, Xu H.-J. J. Org. Chem. 2015; 80: 911