Synthesis 2022; 54(22): 5003-5016
DOI: 10.1055/a-1814-9853
special topic
Aryne Chemistry in Synthesis

Regiocontrol by Halogen Substituent on Arynes: Generation of 3-Haloarynes and Their Synthetic Reactions

Hideto Miyabe


Abstract

The use of arynes as highly reactive intermediates has attracted substantial attention in organic synthesis. To enhance the utility of arynes, the regiocontrol in the reactions of unsymmetrically substituted arynes is an important task. The introduction of halogen substituent at 3-position of arynes leads to sufficient regiocontrol for various synthetic reactions. This short review highlights the utility of 3-halo­arynes in organic synthesis and discusses the distortion models used to explain regioselectivity, representative reactions of 3-haloarynes generated from polyhaloarenes, and the preparation and reactions of easily activatable aryne precursors.

1 Introduction

2 Distortion Models

3 Reaction of Precursors Activated by an Organometallic Reagent or Base

4 Preparation of Easily Activatable Precursors

5 Reactions of Easily Activatable Precursors

6 Concluding Remarks



Publication History

Received: 16 March 2022

Accepted after revision: 01 April 2022

Accepted Manuscript online:
01 April 2022

Article published online:
17 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For some reviews, see:
    • 1a Saito S, Yamamoto Y. Chem. Rev. 2000; 100: 2901
    • 1b Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
    • 1c Tadross PM, Stoltz BM. Chem. Rev. 2012; 112: 3550
    • 1d Goetz AE, Shah TK, Garg NK. Chem. Commun. 2015; 51: 34
    • 1e Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
    • 1f Fluegel LL, Hoye TR. Chem. Rev. 2021; 121: 2413
    • 1g Shi J, Li L, Li Y. Chem. Rev. 2021; 121: 3892
    • 1h Sharma A, Hazarika H, Gogoi P. J. Org. Chem. 2021; 86: 4883
    • 1i Hazarika H, Gogoi P. Org. Biomol. Chem. 2021; 19: 8466
    • 2a Matsumoto T, Sohma T, Hatazaki S, Suzuki K. Synlett 1993; 843
    • 2b Heiss C, Cottet F, Schlosser M. Eur. J. Org. Chem. 2005; 5236
    • 2c Akai S, Ikawa T, Takayanagi S, Morikawa Y, Mohri S, Tsubakiyama M, Egi M, Wada Y, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 7673
    • 2d Dai M, Wang Z, Danishefsky SJ. Tetrahedron Lett. 2008; 49: 6613
    • 2e Ikawa T, Nishiyama T, Shigeta T, Mohri S, Morita S, Takayanagi S, Terauchi Y, Morikawa Y, Takagi A, Ishikawa Y, Fujii S, Kita Y, Akai S. Angew. Chem. Int. Ed. 2011; 50: 5674
    • 2f Lv C, Wan C, Liu S, Lan Y, Li Y. Org. Lett. 2018; 20: 1919
    • 2g Takikawa H, Nishii A, Takiguchi H, Yagishita H, Tanaka M, Hirano K, Uchiyama M, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2020; 59: 12440
    • 2h Shi J, Li L, Shan C, Wang J, Chen Z, Gu R, He J, Tan M, Lan Y, Li Y. J. Am. Chem. Soc. 2021; 143: 2178
    • 2i Shi J, Li L, Shan C, Chen Z, Dai L, Tan M, Lan Y, Li Y. J. Am. Chem. Soc. 2021; 143: 10530
    • 2j Tawatari T, Takasu K, Takikawa H. Chem. Commun. 2021; 57: 11863
    • 3a Ikawa T, Takagi A, Kurita Y, Saito K, Azechi K, Egi M, Kakiguchi K, Kita Y, Akai S. Angew. Chem. Int. Ed. 2010; 49: 5563
    • 3b Ikawa T, Takagi A, Goto M, Aoyama Y, Ishikawa Y, Itoh Y, Fujii S, Tokiwa H, Akai S. J. Org. Chem. 2013; 78: 2965
    • 4a Hamura T, Ibusuki Y, Uekusa H, Matsumoto T, Suzuki K. J. Am. Chem. Soc. 2006; 128: 3534
    • 4b Hamura T, Ibusuki Y, Uekusa H, Matsumoto T, Siegel JS, Baldridge KK, Suzuki K. J. Am. Chem. Soc. 2006; 128: 10032
    • 4c Tadross PM, Gilmore CD, Bugga P, Virgil SC, Stoltz BM. Org. Lett. 2010; 12: 1224
    • 4d Yoshida S, Yano T, Misawa Y, Sugimura Y, Igawa K, Shimizu S, Tomooka K, Hosoya T. J. Am. Chem. Soc. 2015; 137: 14071
    • 4e Umezu S, dos Passos Gomes G, Yoshinaga T, Sakae M, Matsumoto K, Iwata T, Alabugin I, Shindo M. Angew. Chem. Int. Ed. 2017; 56: 1298
    • 4f Wang J, Zhou Y, Xu X, Liu P, Dong G. J. Am. Chem. Soc. 2020; 142: 3050
    • 4g Nakamura Y, Sakata Y, Hosoya T, Yoshida S. Org. Lett. 2020; 22: 8505
    • 4h Nakajima H, Hazama Y, Sakata Y, Uchida K, Hosoya T, Yoshida S. Chem. Commun. 2021; 57: 2621
    • 4i Scherübl M, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2021; 60: 711
    • 5a Yoshida S, Uchida K, Igawa K, Tomooka K, Hosoya T. Chem. Commun. 2014; 50: 15059
    • 5b Shi J, Qiu D, Wang J, Xu H, Li Y. J. Am. Chem. Soc. 2015; 137: 5670
    • 5c Ikawa T, Kaneko H, Masuda S, Ishitsubo E, Tokiwa H, Akai S. Org. Biomol. Chem. 2015; 13: 520
    • 5d Qiu D, He J, Yue X, Shi J, Li Y. Org. Lett. 2016; 18: 3130
    • 5e Shi J, Xu H, Qiu D, He J, Li Y. J. Am. Chem. Soc. 2017; 139: 623
    • 5f Xiong W, Qi C, Cheng R, Zhang H, Wang L, Yan D, Jiang H. Chem. Commun. 2018; 54: 5835
    • 5g He J, Qiu D, Li Y. Acc. Chem. Res. 2020; 53: 508
    • 6a Medina JM, Mackey JL, Garg NK, Houk KN. J. Am. Chem. Soc. 2014; 136: 15798
    • 6b Picazo E, Houk KN, Garg NK. Tetrahedron Lett. 2015; 56: 3511

      For examples of distortion model, See:
    • 7a Cheong PH.-Y, Paton RS, Bronner SM, Im G.-YJ, Garg NK, Houk KN. J. Am. Chem. Soc. 2010; 132: 1267
    • 7b Im G.-YJ, Bronner SM, Goetz AE, Paton RS, Cheong PH.-Y, Houk KN, Garg NK. J. Am. Chem. Soc. 2010; 132: 17933
    • 7c Bronner SM, Mackey JL, Houk KN, Garg NK. J. Am. Chem. Soc. 2012; 134: 13966
    • 7d Lahm ME, Maynard RK, Turney JM, Weinhold F, Schaefer HF. III. J. Org. Chem. 2020; 85: 9905
  • 9 Bronner SM, Goetz AE, Garg NK. J. Am. Chem. Soc. 2011; 133: 3832
    • 10a Du C.-JF, Hart H, Ng K.-KD. J. Org. Chem. 1986; 51: 3162
    • 10b Du C.-JF, Hart H. J. Org. Chem. 1987; 52: 4311
  • 11 Caster KC, Keck CG, Walls RD. J. Org. Chem. 2001; 66: 2932
    • 12a Ramírez A, Candler J, Bashore CG, Wirtz MC, Coe JW, Collum DB. J. Am. Chem. Soc. 2004; 126: 14700
    • 12b Rao UN, Maguire J, Biehl E. ARKIVOC 2004; (i): 88
    • 13a Uchiyama M, Miyoshi T, Kajihara Y, Sakamoto T, Otani Y, Ohwada T, Kondo Y. J. Am. Chem. Soc. 2002; 124: 8514
    • 13b Uchiyama M, Kobayashi Y, Furuyama T, Nakamura S, Kajihara Y, Miyoshi T, Sakamoto T, Kondo Y, Morokuma K. J. Am. Chem. Soc. 2008; 130: 472
  • 14 Nagashima Y, Takita R, Yoshida K, Hirano K, Uchiyama M. J. Am. Chem. Soc. 2013; 135: 18730
  • 15 Wang S.-L, Pan M.-L, Su W.-S, Wu Y.-T. Angew. Chem. Int. Ed. 2017; 56: 14694
  • 16 Kim KS, Ha SM, Kim JY, Kim K. J. Org. Chem. 1999; 64: 6483
  • 17 Ganta A, Snowden TS. Org. Lett. 2008; 10: 5103
    • 18a Yoshida S, Nagai A, Uchida K, Hosoya T. Chem. Lett. 2017; 46: 733
    • 18b Kobayashi T, Hosoya T, Yoshida S. J. Org. Chem. 2020; 85: 4448
    • 18c Minoshima M, Uchida K, Nakamura Y, Hosoya T, Yoshida S. Org. Lett. 2021; 23: 1868
  • 19 Sapountzis I, Lin W, Fischer M, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 4364
    • 20a Li Y, Chakrabarty S, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2016; 55: 802
    • 20b Kaldas SJ, Kran E, Mück-Lichtenfeld C, Yudin AK, Studer A. Chem. Eur. J. 2020; 26: 1501
    • 20c Kran E, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Chem. Eur. J. 2021; 27: 9281
    • 21a Sundalam SK, Nilova A, Seidl TL, Stuart DR. Angew. Chem. Int. Ed. 2016; 55: 8431
    • 21b Stuart DR. Synlett 2017; 28: 275
    • 21c Wang M, Huang Z. Org. Biomol. Chem. 2016; 14: 10185
    • 21d Chen H, Han J, Wang L. Beilstein J. Org. Chem. 2018; 14: 354
    • 21e Nilova A, Sibbald PA, Valente EJ, González-Montiel GA, Richardson HC, Brown KS, Cheong PH.-Y, Stuart DR. Chem. Eur. J. 2021; 27: 7168
  • 22 Nilova A, Metze B, Stuart DR. Org. Lett. 2021; 23: 4813
  • 23 Dong Y, Lipschutz MI, Tilley TD. Org. Lett. 2016; 18: 1530
    • 24a Mori I, Kadosaka T, Sakata Y, Misumi S. Bull. Chem. Soc. Jpn. 1971; 44: 1649
    • 24b Rogers ME, Averill BA. J. Org. Chem. 1986; 51: 3308
    • 24c Chmiel J, Heesemann I, Mix A, Neumann B, Stammler H.-G, Mitzel NW. Eur. J. Org. Chem. 2010; 3897
    • 24d Lamm J.-H, Vishnevskiy YV, Ziemann E, Neumann B, Stammler H.-G, Mitzel NW. ChemistryOpen 2018; 7: 111
  • 25 Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 1211
    • 26a Hall C, Henderson JL, Ernouf G, Greaney MF. Chem. Commun. 2013; 49: 7602
    • 26b Peña D, Cobas A, Pérez D, Gutián E. Synthesis 2002; 1454
  • 27 Bronner SM, Garg NK. J. Org. Chem. 2009; 74: 8842
  • 28 Yoshioka E, Kakigi K, Miyoshi S, Kawasaki Y, Miyabe H. J. Org. Chem. 2020; 85: 13544
  • 29 Mesgar M, Daugulis O. Org. Lett. 2016; 18: 3910
  • 30 Yoshimura A, Fuchs JM, Middleton KR, Maskaev AV, Rohde GT, Saito A, Postnikov PS, Yusubov MS, Nemykin VN, Zhdankin VV. Chem. Eur. J. 2017; 23: 16738
    • 31a Lanzi M, Dherbassy Q, Wencel-Delord J. Angew. Chem. Int. Ed. 2021; 60: 14852
    • 31b Lanzi M, Abdine RA. A, De Abreu M, Wencel-Delord J. Org. Lett. 2021; 23: 9047
  • 32 Yoshida H, Yoshida R, Takaki K. Angew. Chem. Int. Ed. 2013; 52: 8629
    • 33a Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Org. Lett. 2017; 19: 5521
    • 33b Yoshida S, Nakajima H, Uchida K, Yano T, Kondo M, Matsushita T, Hosoya T. Chem. Lett. 2017; 46: 77
    • 33c Matsuzawa T, Hosoya T, Yoshida S. Org. Lett. 2021; 23: 2347
  • 34 O’Sullivan L, Patel KV, Rowley BC, Brownsey DK, Gorobets E, Gelfand BS, Van Humbeck JF, Derksen DJ. J. Org. Chem. 2022; 87: 846
  • 35 Xie P, Yang S, Guo Y, Cai Z, Dai B, He L. J. Org. Chem. 2020; 85: 8872
  • 36 Huang W.-B, Qiu L.-Q, Ren F.-Y, He L.-N. Chem. Commun. 2021; 57: 9578
  • 37 Xu H, He J, Shi J, Tan L, Qiu D, Luo X, Li Y. J. Am. Chem. Soc. 2018; 140: 3555
  • 38 Chaitanya NK, Rao YN. S, Choutipalli VS. K, Mainkar PS, Subramanian V, Chandrasekhar S. Chem. Commun. 2022; 58: 3178
  • 39 Hendrick CE, Wang Q. J. Org. Chem. 2015; 80: 1059
  • 40 Demory E, Devaraj K, Orthaber A, Gates PJ, Pilarski LT. Angew. Chem. Int. Ed. 2015; 54: 11765
  • 41 Kou KG. M, Pflueger JJ, Kiho T, Morrill LC, Fisher EL, Clagg K, Lebold TP, Kisunzu JK, Sarpong R. J. Am. Chem. Soc. 2018; 140: 8105
    • 42a Dyke AM, Gill DM, Harvey JN, Hester AJ, Lloyd-Jones GC, Muñoz MP, Shepperson IR. Angew. Chem. Int. Ed. 2008; 47: 5067
    • 42b Cheng R, Xiong W, Qi C, Wang L, Ren Y, Jiang H. Chem. Commun. 2020; 56: 6495
    • 42c Charmant JP. H, Dyke AM, Lloyd-Jones GC. Chem. Commun. 2003; 380
    • 42d Korb M, Lang H. Chem. Soc. Rev. 2019; 48: 2829