Synthesis 2022; 54(19): 4210-4219
DOI: 10.1055/a-1811-8075
feature

Enantioselective Dearomative Alkynylation of Chromanones: Opportunities and Obstacles

Yong Guan
a   Worcester Polytechnic Institute, Worcester, MA 01609, USA
,
Tadas Buivydas
a   Worcester Polytechnic Institute, Worcester, MA 01609, USA
,
Remy F. Lalisse
b   The Ohio State University, Columbus, OH 43210, USA
,
Rameez Ali
a   Worcester Polytechnic Institute, Worcester, MA 01609, USA
,
Christopher M. Hadad
b   The Ohio State University, Columbus, OH 43210, USA
,
a   Worcester Polytechnic Institute, Worcester, MA 01609, USA
› Author Affiliations
We gratefully acknowledge the National Institutes of Health for funding these studies through 1R35GM124804-01.


Abstract

A catalytic and highly enantioselective dearomative alkynylation of chromanones has been discovered that enables the construction of biologically relevant tertiary ether stereogenic centers. This methodology is robust, accommodating a variety of alkynes and chromanones. More than 40 substrates tested gave rise to >90% ee. Computational studies have indicated that the optimal indanyl ligand identified for most cases likely affords a network of supportive, non-covalent interactions that drive the enantioselective nature of the reaction.

Supporting Information



Publication History

Received: 04 January 2022

Accepted after revision: 30 March 2022

Accepted Manuscript online:
30 March 2022

Article published online:
09 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 2 Zhang W, Kroh K, Zia-Ullah, Florke U, Pescitelli G, Di Bari L, Antus S, Kurtan T, Rheinheimer J, Draeger S, Schulz B. Chem Eur. J. 2008; 14: 4913
  • 3 Stewart M, Capon RJ, White JM, Lacey E, Tennant S, Gill J, Shaddock M. J. Nat. Prod. 2004; 67: 728
    • 4a Rönsberg D, Debbab A, Mándi A, Vasylyeva V, Böhler P, Stork B, Engelke L, Hamcher A, Sawadogo R, Diederich M, Wray V, Lin W, Kassack MU, Janiak C, Scheu S, Wesselborg S, Kurtán T, Aly AH, Proksch P. J. Org. Chem. 2013; 78: 12409
    • 4b Böhler P, Stuhldreier F, Anand R, Kondadi A, Schlutermann D, Berleth N, Deitersen J, Wallot-Hieke N, Wu W, Frank M, Niemann H, Wesbuer E, Barbian A, Luyten T, Parys J, Weidtkamp-Peters S, Borchardt A, Reichert A, Pena-Blano A, Garcia-Saez A, Itskanov S, van der Bliek A, Proksch P, Wesselborg S, Stork B. Cell Death Dis. 2018; 9: 286
    • 4c Wang C, Engelke L, Bickel D, Hamacher A, Frank M, Proksch P, Gohlke H, Kassack MU. Bioorg. Med. Chem. 2019; 27: 115044
    • 4d Yang R, Dong Q, Zu H, Gao X, Zhao Z, Qin J, Chen C, Luo D. ACS Omega 2020; 5: 25927
  • 5 Kikuchi H, Isobe M, Sekiya M, Abe Y, Hoshikawa T, Ueda K, Kurata S, Katou Y, Oshima Y. Org. Lett. 2011; 13: 4624
    • 6a Wu G, Yu G, Kurtan T, Mandi A, Peng J, Mo X, Liu M, Li H, Sun X, Li J, Zhu T, Gu Q, Li D. J. Nat. Prod. 2015; 78: 2691
    • 6b Kolotilo NV, Sinitsa AA, Rassukana YuV, Onys’ko PP. Zh. Obshch. Khim. 2006; 76: 1260
  • 7 Kikuchi H, Isobe M, Sekiya M, Abe Y, Hoshikawa T, Ueda K, Kurata S, Katou Y, Oshima Y. Org. Lett. 2011; 13: 4624
    • 8a For a review, see: Nibbs AE, Scheidt KA. Eur. J. Org. Chem. 2012; 449

    • For select examples of enantioselective 2-alkylchromanone synthesis, see:
    • 8b Rao AV, Gaitonde AS, Prakash SP, Rao SP. Tetrahedron Lett. 1994; 35: 6347
    • 8c Kawasaki M, Kakuda H, Goto M, Kawabata S, Kometani T. Tetrahedron: Asymmetry 2003; 14: 1529
    • 8d Biddle MM, Lin M, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 3830
    • 8e Boekl H, Mackert R, Muramann C, Schweickert N. Patent US66646136B1, 2013
    • 8f Termath AO, Sebode H, Schlundt W, Stemmler RT, Netscher T, Bonrath W, Schmalz H.-G. Chem. Eur. J. 2014; 20: 12051
    • 8g Brown MK, Degrado SJ, Hoveyda AH. Angew. Chem. Int. Ed. 2005; 44: 5306
    • 8h Vila C, Hornillos V, Fananas-Mastral M, Feringa BL. Chem. Commun. 2013; 49: 5933
    • 8i Trost BM, Gnanamani E, Kalnmals CA, Hung C.-I, Tracy JS. J. Am. Chem. Soc. 2019; 141: 1489

      For select reports demonstrating the importance of constructing tertiary ether stereocenters from chromanones, see:
    • 9a Baek D, Ryu H, Ryu J, Lee J, Stoltz B, Hong S. Chem. Sci. 2020; 11: 4602
    • 9b Gerten A, Stanley L. Tetrahedron Lett. 2016; 57: 5460
  • 10 Iwasaki H, Kume T, Yamamoto T, Akiba K. Tetrahedron Lett. 1987; 28: 6355
  • 11 Hardman-Baldwin A, Visco M, Wieting J, Stern C, Kondo S, Mattson A. Org. Lett. 2016; 18: 3766
    • 12a Attard J, Osawa K, Guan Y, Hatt J, Kondo S, Mattson A. Synthesis 2019; 51: 2107
    • 12b Guan Y, Attard J, Visco M, Fisher T, Mattson A. Chem. Eur. J. 2018; 24: 7123
    • 12c Schafer AG, Wieting JM, Fisher TJ, Mattson AE. Angew. Chem. Int. Ed. 2013; 52: 11321
    • 12d Wieting JM, Fisher TJ, Schafer AG, Visco MD, Gallucci JC, Mattson AE. Eur. J. Org. Chem. 2015; 525
    • 12e Schafer AG, Wieting JM, Mattson AE. Org. Lett. 2011; 13: 5228
    • 13a Fischer T, Bamberger J, Gomez-Martinez M, Piekarski D, Mancheno O. Angew. Chem. Int. Ed. 2018; 58: 3217
    • 13b DeRatt L, Pappoppula M, Aponick A. Angew. Chem. Int. Ed. 2019; 58: 8416
    • 14a Guan Y, Attard J, Mattson AE. Chem. Eur. J. 2020; 26: 1742
    • 14b Guan Y, Buivydas T, Lalisse R, Attard J, Ali R, Stern C, Hadad C, Mattson A. ACS Catal. 2021; 11: 6325